Есть идея! - [60]

Шрифт
Интервал

Если две предыдущие головоломки со спичками покажутся вашим друзьям слишком легкими, предложите им следующий, более трудный вариант. Спички разложены так же, как и прежде. Требуется взять 13 спичек так, чтобы осталось 8. На этот раз нужно догадаться, что из спичек можно сложить арифметическое выражение, значение которого равно 8.

Существует бесчисленное множество других головоломок со спичками, палочками, карандашами, соломинками и аналогичными предметами. Предлагаем вам и вашим друзьям еще две задачи. Составьте из 12 спичек следующее арифметическое «равенство»:

Требуется превратить его в настоящее равенство или неравенство, взяв или переложив одну спичку. Задача допускает много решений. Приведем лишь 4 из них:

Разложите теперь спички так, как показано на рисунке:

Устройте с друзьями состязание: кто сумеет прочитать в этих трех фигурках больше слов? Кто останется с носом?

Мини-кроссворд проф. Слога

Проф. Слог. Справившись с нашим следующим заданием, мистер Ши Ли Хой, вы выиграете приз в 20 долларов. Перед вами простой кроссворд. В нем всего 3 слова по горизонтали и 2 по вертикали. Вам дается 3 мин, чтобы решить его.

За 3 мин мистер Ши Ли Хой сумел отгадать лишь первое слово по горизонтали.

Мистер Ши Ли Хой. Мне очень жаль, профессор, но я не могу придумать больше ни слова!

Проф. Слог. Поверьте, мне тоже очень жаль, мистер Ши Ли Хой. Вы не заметили, что все три слова по горизонтали пишутся одинаково, хотя и отличаются по значению.

Проф. Слог. А теперь, пока мы ожидаем нашего следующего гостя, небольшое задание для наших телезрителей. Не можете ли вы так переставить буквы в трех словах «ВОЛОС НА ЛОКОН», чтобы получилось слово «КОЛОННА»?

Магические квадраты и анаграммы

Кроссворды с полным основанием можно отнести к числу комбинаторных задач: ведь речь идет о составлении пересекающихся последовательностей символов. Современные ЭВМ обладают достаточно большой памятью, чтобы вместить все слова любого естественного языка, и ничто не мешает нам, по крайней мере в принципе, составить программы, которые будут весьма успешно разгадывать кроссворды. Можно написать и такие программы, которые сами будут составлять кроссворды.

Большинство кроссвордов имеют «дырочки» — черные клетки или пробелы, разделяющие слова. В самых древних кроссвордах, не утративших своего первозданного вида, «дырочек» не было (так же как их нет в нашем шуточном кроссворде). Слова располагались, образуя так называемый «словесный квадрат». Вот, например, как выглядит такой словарь 4-го порядка (из четырехбуквенных слов):

ПУСК

УЗОР

СОДА

КРАБ

Четыре слова («пуск», «узор», «сода» и «краб») можно прочитать и по горизонтали, и по вертикали. Если по горизонтали стоят одни слова, а по вертикали другие, то словесный квадрат называется двойным:

ИГЛА

КРУГ

РАПА

АДАТ

Чем выше порядок, тем труднее составлять словесные квадраты, как простые, так и двойные. Попробуйте самостоятельно составить несколько словесных квадратов 4-го порядка. Если вы успешно справитесь с этим заданием, попытайтесь составить квадраты 5-го и 6-го порядка. Построить квадраты 7-го и еще более высокого порядка чрезвычайно трудно. Знатокам и ценителям удавалось изредка составлять словесные квадраты 8-го, 9-го и 10-го порядков, но при этом почти всегда приходилось использовать необычные, странно звучащие слова.

Последний вопрос проф. Слога (как из букв, входящих в слова «ВОЛОС НА ЛОКОН», составить слово «КОЛОННА») относится к так называемым анаграммам — составлению новых слов или фраз из букв, входящих в какое-нибудь другое слово или предложение (решение приведено в конце книги). Существует множество анаграмм самого забавного свойства, например:

ШАМОТ — ТОМАШ

МАРС — СРАМ

ОКОРОК — РОКОКО

Может быть, вам удастся придумать примеры и получше.

В старину анаграммы использовались для закрепления приоритета учеными, не торопившимися по тем или иным соображениям раскрывать суть своего открытия. Например, Галилей сообщил об открытии фаз Венеры в анаграмме: «Haec immatura a me jam frustra leguntur. O. V.», означавшей: «Этого от меня хотят слишком рано и напрасно». И лишь впоследствии дал правильную расшифровку анаграммы: «Cynthya figuras aemulatur mater amorum» («Мать любви [Венера] подражает видам Цинтии [Луны]»).

Мари Бирам

Следующим гостем проф. Слога была Мари Бирам. Что необычного в ее имени?

Может быть, эта реклама вин поможет вам. Надпись на рекламе обладает тем же свойством, что и имя Мари Бирам.

«Золото лоз» и «Мари Бирам» — палиндромы, то есть надписи, которые читаются одинаково в обе стороны: от начала к концу и от конца к началу.

Ада

Можете ли вы привести другие примеры имен и фамилий, обладающих палиндромной симметрией? (Это не так просто, как кажется.) Вот несколько примеров: Анна, Тим Смит, Нелла Аллен, Тит.

Загадочные картинки

Проф. Слог. Добро пожаловать к нам в студию, Мари! Эти картины имеют самое непосредственное отношение к вашему первому заданию. На каждой из них изображено какое-нибудь известное математическое понятие. Разумеется, я имею в виду не «портрет», а скорее «скрытое изображение».

Проф. Слог. Позвольте мне пояснить, что я имею в виду, на примере. На этой картине изображено число


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.