Есть идея! - [27]

Шрифт
Интервал

Неожиданные решения арифметических задач

Говоря об арифметике, разные люди вкладывают в это понятие различное содержание. Мы будем понимать под арифметикой все, что так или иначе связано с изучением свойств целых чисел и операций сложения, вычитания, умножения и деления, производимых над числами.

Когда-то, на заре человечества (точную дату не может назвать ни один антрополог), первобытные люди открыли, что предметы можно считать и результат счета не зависит от того, в каком порядке сосчитаны предметы. Например, если вы приметесь считать двух овец по пальцам, то результат будет одним и тем же независимо от того, с какой овцы вы начнете считать и будете ли вы загибать пальцы с мизинца или с большого пальца. У вас всегда получится 2, а если вы сосчитаете две овцы, а потом еще одну, то у вас всегда получится 3.

Такие арифметические теоремы, как «2 + 1 = 3», созревали и становились достоянием умов на протяжении нескольких столетий. Если бы мы могли прокрутить назад пленку, на которой была бы запечатлена история человечества, то вряд ли нам удалось найти какой-то век, о котором можно было бы с уверенностью сказать: «Именно тогда человечество открыло арифметику». Маленькие дети овладевают понятием числа так же постепенно и незаметно. В один прекрасный день ребенок может впервые заявить изумленным родителям: «Один плюс один — два», но смысл этого утверждения ясен малышу задолго до того, как он выскажет свою первую арифметическую теорему.

Все истинные теоремы арифметики следуют непосредственно из аксиом и определений числовой системы, но это отнюдь не означает, будто истинность или ложность любого арифметического утверждения легко распознается на слух. Если кто-нибудь скажет, что при умножении 12345679 на 9 получается 111111111, вы можете не верить ему до тех пор, пока сами не умножите одно число на другое. Существуют арифметические теоремы, которые просто сформулировать, но так трудно доказать, что никто пока не знает, верны ли они. Примерам таких утверждений может служить знаменитая гипотеза Гольбаха: всякое четное число больше 2 представимо в виде суммы двух простых чисел. Никому до сих пор не удалось ни доказать ее, ни построить контрпример.

В этой главе мы рассмотрим несколько задач о числах, допускающих неожиданно простые решения, додуматься до которых не так-то просто. При выборе задач мы отдавали предпочтение таким, которые при всей элементарности служили бы ступенькой, позволяющей читателю подняться на более высокую ступень арифметики, получившей название теории чисел. Например, рассказ-задача «Разбитые грампластинки» вводит в круг простейших идей диофантова анализа — решения уравнений в целых числах. Другая задача «Один лишний» познакомит вас с важным понятием наименьшего общего кратного и интересным фокусом, основанным на замечательной «китайской теореме об остатках».

Дихотомия (последовательное разбиение множества на 2 части), играющая важную роль в вычислительной технике и теории автоматической сортировки данных, лежит в основе задачи об угадывании номера телефона Элен и позволяет читателю войти в круг вопросов, связанных с двоичной системой счисления. Принцип «птичка в клетке», известный также под названием принципа Дирихле, позволяет доказывать многие важные факты из теории чисел. Мы используем его для доказательства двух забавных утверждений: о бумажных долларах и о числе волос на голове человека. Свойство двух целых чисел быть взаимно простыми (не иметь общих делителей, кроме единицы) позволяет доказать, что, за исключением 12 часов, часовая, минутная и секундная стрелки часов никогда не совпадают (обычно это вычисление доказывают, проделывая довольно громоздкие выкладки).

Задача о счете по бутылкам легко решается, если воспользоваться понятием сравнения по модулю, и заставляет вспомнить о знаменитой задаче Иосифа Флавия, которую можно удивительно наглядно продемонстрировать при помощи колоды игральных карт.

Хотя задачи, собранные в этой главе, математики сочли бы тривиальными, открываемые ими направления для исследований в теории чисел далеко не тривиальны и не могут не поражать изяществом и идейным богатством древнейшей из всех дедуктивных систем — системы, оперирующей с символами, обозначающими знакомые всем числа.

Разбитые грампластинки

Больше всего на свете Боб и Элен любили всякого рода головоломки. Особенно им нравилось ставить в тупик друг друга и своих друзей каверзными вопросами.

Однажды, когда Боб и Элен проезжали мимо магазина грампластинок, Боб задал Элен вопрос.

Боб. Ты все еще собираешь пластинки с джазовой музыкой?

Элен. Нет, половину всех пластинок и еще полпластинки я подарила Сьюзен.

Элен. Половину оставшихся пластинок и еще полпластинки я подарила Джо.

Элен. После этого у меня осталась одна пластинка. Я подарю ее тебе, если ты скажешь, сколько пластинок было у меня в коллекции до того, как я начала ее раздавать.

Боб не сразу смог решить задачу, так как не мог понять, зачем Элен понадобилось дарить друзьям половинки пластинок.

Внезапно его осенила блестящая мысль, и он понял, что ни одна пластинка не была разбита на половники. Боб ответил на вопрос Элен, и та подарила ему последнюю пластинку из своей коллекция.


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.


Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.