Эпигенетика - [22]
Tsukiyama T. and Wu C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell83: 1011–1020.
Waddington C. H. 1953. Epigenetics and evolution. Symp. Soc. Exp. Biol. 7: 186–199.
Wallis J. W., Hereford L., and Grunstein M. 1980. Histone H2B genes of yeast encode two different proteins. Cell22: 799–805.
Wysocka J., Swigut T., Milne T. Dou Y., Zhang X., Burlingame A., Roeder R., Brivanlou A., and Allis CD. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell121: 859–872.
Глава 3. Общий обзор и основные понятия
С. David Allis, Thomas Jenuwein, and Danny Reinberg
The Rockefeller University, New York; ‘Research Institute of Molecular Pathology, Vienna, Austria; UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
Общее резюме
Секвенирование ДНК генома человека и геномов многих модельных организмов вызвало в последние несколько лет значительное возбуждение в биомедицинском сообществе и среди обычной публики. Эти генетические «синьки», демонстрирующие общепринятые правила менделевской наследственности, оказываются теперь легко доступными для тщательного анализа, открывая дверь для более глубокого понимания биологии человека и его болезней. Эти знания порождают также новые надежды на новые лечебные стратегии. Тем не менее, многие фундаментальные вопросы остаются без ответа. Например, как осуществляется нормальное развитие, при том что каждая клетка обладает одной и той же генетической информацией и все же следует своим особым путем развития с высокой временной и пространственной точностью? Каким образом клетка решает, когда ей делиться и дифференцироваться, а когда сохранять неизменной клеточную идентичность, реагируя и проявляя себя согласно своей нормальной программе развития? Ошибки, случающиеся в вышеупомянутых процессах, могут вести к возникновению таких болезненных состояний, как рак. Закодированы ли эти ошибки в ошибочных «синьках», которые мы унаследовали от одного или обоих родителей, или же имеются какие-то другие слои регуляторной информации, которые не были правильно считаны и декодированы?
У человека генетическая информация (ДНК) организована в 23 пары хромосом, состоящих из примерно 25 000 генов. Эти хромосомы можно сравнить с библиотеками, содержащими разные наборы книг, которые в совокупности обеспечивают инструкции для развития целого человеческого организма. Нуклеотидная последовательность ДНК нашего генома состоит из примерно 3 × 10>9 оснований, сокращенно обозначаемых в этой последовательности четырьмя буквами А, С, G и Т, которые образуют определенные слова (гены), предложения, главы и книги. Однако чем же диктуется, когда именно и в каком порядке эти разные книги нужно читать, остается далеко не ясным. Ответ на этот экстраординарный вызов заключается, вероятно, в том, чтобы выяснить, каким образом клеточные события скоординированы в процессе нормального и ненормального развития.
Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована — примерно в 10 000 раз, — чтобы поместиться в клеточном ядре — том компартменте клетки, в котором хранится наш генетический материал Накручивание ДНК на «шпульки» из белков, так называемых гистоновых белков, обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок: ДНК и который известен как хроматин. Однако в процессе упаковки ДНК для лучшего соответствия ограниченному пространству задача усложняется — во многом так же, как при расстановке слишком большого числа книг на библиотечных полках: становится все труднее и труднее найти и прочесть книгу по выбору, и, таким образом, становится необходимой система индексирования. Такое индексирование обеспечивается хроматином как платформой для организации генома. Хроматин не однороден по своей структуре; он выступает в различных формах упаковки — от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин). В основной полимер хроматина могут вводиться изменения путем включения необычных гистоновых белков (известных как варианты гистонов), измененных структур хроматина (известных как ремоделинг хроматина) и добавления химических «флажков», меток к самим гистоновым белкам (известного как ковалентные модификации). Более того, добавление метальной группы непосредственно к цитозиновому основанию (С) в матрице ДНК (известное как метилирование ДНК) может создавать сайты для присоединения белков, чтобы изменить состояние хроматина или повлиять на ковалентную модификацию резидентных гистонов. Полученные в последнее время данные позволяют предполагать, что некодирующие РНК могут «направлять» переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.