Эмбрионы в глубинах времени - [23]

Шрифт
Интервал

При рассмотрении разнообразия в области индивидуального развития и таксономии, которое должно было существовать, и превратностей геологического сохранения остатков применение универсального метода может быть очень сложным. Но, по крайней мере, экспериментальный подход с использованием ныне живущих видов скажет нам и тем самым позволит нам более критически относиться к тому, чего мы можем достигнуть, обладая новыми инструментами отображения и лучшим пониманием процесса фоссилизации.

Глава четвёртая

Кости и зубы под микроскопом

Может показаться весьма невероятным, но самым важным рабочим инструментом для большинства палеонтологов, помимо молотка, является микроскоп. Значительная часть людей, изучающих доисторическое биологическое разнообразие, работает в интересах нефтедобывающей промышленности, исследуя мельчайшую пыльцу ископаемых растений или ископаемых фораминифер; последние являются представителями группы одноклеточных организмов, важной для установления стратиграфической корреляции между геологическими подразделениями. Палеонтологам микроскоп позволяет также изучать микроструктуру тканей ископаемых организмов, в особенности кость, которая стала важным предметом исследований, имеющих отношение к изучению индивидуального развития у вымерших таксонов. Изучение живых тканей, или гистология, является обширным полем деятельности, и многое в ней касается идентификации патологий, например, важная диагностическая процедура при исследовании рака. Сравнительные исследования тканей различных организмов, бывших предметом изучения на протяжении столетий, стали возможными благодаря технологическому прогрессу в изготовлении тонких срезов нежных и зачастую мелких комплексных структур различной консистенции и формы. Самые первые работы с тканями на микроскопическом уровне осуществил швейцарец Вильгельм Гис (1831–1904), уроженец Базеля. Он изобрёл микротом, механическое устройство, состоящее из хитроумно расположенного лезвия, которое использовалось для того, чтобы делать тонкие срезы тканей для микроскопического исследования. Благодаря этой новой технологической разработке ему удалось проследить происхождение различных типов тканей животных на эмбриональной стадии. Насколько я знаю, Гис не изучал микроструктуру ископаемых костей; он скорее интересовался эмбрионами и мягкими тканями, например, делая открытия, которые дали ему повод использовать термин «дендриты» для проводящих отростков нервных клеток. Гистологические срезы с использованием преимущественно того же самого метода, который применял Гис примерно 150 лет назад, в настоящее время используются при изучении эмбрионов ныне живущих видов, которые, учитывая их размер, представляют собой очень сложный объект для изучения методом анатомирования.[38]

С достаточно давних пор палеонтологи поняли, что тонкие срезы могут показать важные анатомические детали ископаемых остатков. Британский специалист по ископаемым рыбам Уильям Джонсон Соллас (1849–1936), профессор геологии из Оксфорда, и его дочь Игерна стали пионерами в этих исследованиях, когда в 1903 году издали работу о девонской рыбе с неясными родственными связями. Совершённый ими технический прорыв состоял в последовательном стачивании образца, создании рисунков появившихся при этом сечений и переводе их в восковую модель, увеличенную по сравнению с оригиналом. Соллас вначале создал модели ископаемых змеехвосток (офиурид) и граптолитов, группы вымерших беспозвоночных, родственных баланоглоссу, которые были выставлены в Британской научной ассоциации в 1901 году.[39] Соллас сделал модели многих окаменелостей, но похоже, что сохранились лишь немногие из них. Позже метод Солласа был мастерски использован школой шведских специалистов в области сравнительной анатомии. Но изготовление восковых моделей отнимает чрезвычайно много времени. Например, известная восковая модель головы Eusthenopteron, животного, важного звена в переходе между рыбами и наземными позвоночными, отняла пятнадцать лет времени у двух техников на её изготовление. В наше время цифровая камера и правильно подобранные оборудование и программное обеспечение могут сделать ту же самую работу в течение нескольких дней. Это технический прогресс огромного масштаба.

Следующий крупный технологический шаг вперёд был представлен в работе 1970 года французскими исследователями Сесиль Поплен и Арманом Ж. де Рикле, которые изобрели метод получения срезов ископаемых образцов с помощью микротома. Они подбирали технику разделения окаменелостей на срезы, которые можно было бы разместить на стекле, как при стандартных гистологических методах. Это были вовсе не тривиальные сложности, поскольку у окаменелостей твёрдая ткань пористая, хрупкая, ломкая, более гетерогенная по составу и менее эластичная при нагрузках, чем кость современных животных. При пропитке ископаемых костей смолами в вакууме и под давлением каждый срез становится более устойчивым. Химический состав ископаемой кости также отличается от её состава у ныне живущих таксонов. Получившиеся в результате срезы сохраняют очертания различных структур, имеющихся в окаменелости. Следовательно, даже если химический состав изменился или исходные компоненты были замещены, границы между ними сохранились. Эта техника использования микротома была первым шагом к замене метода последовательного стачивания, которому приносится в жертву исходная окаменелость. Новейшая техника визуализации внутренней структуры окаменелости не требует получения срезов. С помощью мощной компьютерной томографии с высоким разрешением теперь возможно изучить детали микроанатомии, даже не разрезая окаменелость.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.