Эмбрионы в глубинах времени - [22]
Но некоторые коллеги с богатым опытом в области анатомии китообразных привели доводы против истолкования находки как плода Maiacetus: положение меньшей особи относительно позвоночного столба старшей особи слишком близко голове предполагаемой матери, на уровне желудка, и отсутствие позвонков её хвоста больше соответствует интерпретации меньшей особи в качестве добычи. Но, каким бы ни был результат этой дискуссии, этот пример показывает важность исследования судьбы трупов умерших животных, когда они разлагаются и начинают процесс сохранения в ископаемом состоянии. Наука, посвящённая такого рода исследованиям, тафономия, становится значимой при исследовании ископаемых эмбрионов и других ключевых окаменелостей, сохраняющих мягкие ткани.
Сгнившие и окаменевшие эмбрионы
Благодаря исследованиям в области тафономии мы достигли понимания того, как лучше интерпретировать анатомические детали важных окаменелостей. Исследуя характер посмертного разложения, мы знаем, как анатомические составляющие, отличающиеся друг от друга по своим химическим свойствам, теряются на разных стадиях разложения. Также могут возникать топографические изменения структур организма, которые ещё более затрудняют интерпретацию на первый взгляд полных окаменелостей.
Примечательный пример такого рода исследований касался темпа и последовательности разложения отдельных деталей строения у видов базальных позвоночных. Задачей Роберта Сансома, Марка Пурнелла и их коллег в Лестере была интерпретация анатомии предположительных ранних ископаемых хордовых путём исследования их ныне живущих аналогов после смерти. В процессе разложения детали анатомии, образованные мягкими тканями, имеют тенденцию к разрушению, но не все особенности исчезают в одинаковом темпе. Хотя эта работа не касалась эмбрионов или особенностей онтогенеза, она упоминается здесь, поскольку иллюстрирует тафономический подход, а также имеет отношение к приобретению первыми, вымершими представителями родословной ветви особенностей строения, чем-то способствующих пониманию происхождения систем развития, которые обеспечивают появление этих особенностей. Сансон и его коллеги изучали разложение только что умерших особей ланцетника Branchiostoma lanceolatum и миноги Lampetra fluviatilis. Среди деталей, важных для изучения у ископаемых остатков, были глаза, хвост и предшественник позвоночника, известный как нотохорд. Органы были помещены для гниения внутрь прозрачных пластиковых коробок, заполненных солёной водой и инкубируемых при 25 градусах Цельсия сроком до двухсот дней.
Исследователи зафиксировали процесс распада для каждой анатомической детали и подсчитали изменения в соответствии с простой системой оценки. Деталями строения, более стойкими к разложению были те, которые являлись общими особенностями всех позвоночных, например, нотохорд. Напротив, детали строения, эволюционировавшие позднее, сгнили первыми. Это прискорбно, поскольку позже возникшие детали строения, которые различают близкородственных животных внутри родословной ветви, являются наиболее информативными для целей реконструкции эволюционного древа.
Исследование показало, что, будь окаменелость остатками примитивного хордового или разложившегося позвоночного, по отношению к ней требуются тщательные анатомические и химические исследования. Некоторые из кембрийских ископаемых форм, которых касается это тафономическое исследование, при более тщательном изучении могут оказаться более близкими родственниками позвоночным, чем считалось до этого. Вероятно, мы этого никогда не сможем узнать, если принимать во внимание превратности отклонений тафономического характера. Отложения во всём мире полны окаменелостей, которые ещё ждут того момента, когда их обнаружат, равно как и сотни кабинетов в музеях, и эти окаменелости не представляют собой такой сложности для интерпретации, как эти кембрийские формы.
Другой пример тафономических исследований, на сей раз более подходящий к теме этой книги, касается процесса разложения и тафономии крошечных эмбрионов. Эти исследования были инициированы открытием в последние двадцать лет кембрийских эмбрионов многоклеточных животных из Китая. Эти окаменелости по расположению клеток и форме похожи на эмбрионов современных морских животных, но они очень мелких размеров и сложны для изучения. Поэтому даже их органическая природа может оказаться под вопросом и в некоторых случаях действительно подвергалась серьёзным сомнениям.
Наиболее информативные исследования стадий развития кембрийских эмбрионов от дробления до стадий, непосредственно предшествующих выклеву, включали получение изображений с помощью синхротрона, крупное технологическое достижение, которое позволяет проводить исследование крохотных окаменелостей на клеточном уровне.[37] Порода подвергается химическому воздействию в целях растворения карбоната кальция, окружающего крошечные окаменелости, состоящие из фосфата кальция. Поскольку каждая из этих окаменелостей составляет менее полумиллиметра в длину, это является трудоёмкой задачей. Если принимать во внимание эти ограничения и тот факт, что для поиска таких крохотных, клеточных окаменелостей было сделано ещё очень мало, таксономический и филогенетический охват ископаемых эмбрионов очень ограничен. Фактически, в большинстве случаев вид животного, представленного различными сохранившимися стадиями, остаётся нерешённым вопросом. Некоторые тщательные исследования раскрыли характер дробления у некоторых эмбрионов — это картина деления клеток, ведущего к образованию скопления клеток на первых стадиях развития. Но некоторые из особенностей трудны для распознания с точки зрения как биологии, так и геологии. Тафономические исследования предоставили нам свидетельства того, какие эмбриологические стадии могут сохраниться и как долго и в каких условиях жили эти, главным образом кембрийские, организмы. Пионерными в этой области были исследования Элизабет Рафф и её коллег, которые провели эксперименты с эмбрионами и личинками морских ежей, группы организмов, предпочитаемых у специалистов в области биологии развития из-за того, что о ранних стадиях их онтогенеза известно многое. Рафф и коллеги обнаружили, что сохранение эмбрионов в основном не связано с размерами, и что минерализация тонких особенностей строения, которые могли бы затем быть изученными, была осуществима во многих обстоятельствах. Одни химические условия больше способствовали точному сохранению клеточной анатомии, чем другие. Некоторые стадии обладали незначительным потенциалом для сохранения. Подобные эксперименты в настоящее время проведены с различными видами, но ещё больше должно быть сделано, прежде чем будут разработаны точные или общие протоколы для интерпретации крошечных, сложных органических структур из отдалённого прошлого.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.