Эмбрионы в глубинах времени - [16]
Хвост — это модуль организма, обычно характеризующийся большей степенью своей изменчивости по сравнению с другими частями осевой области тела у позвоночных, как уже отмечал в 1913 году Э. С. Гудрич. В зависимости от рассматриваемого вида живых организмов, хвосты могут играть важную роль в передвижении, запасании жира или защите от хищников среди прочего. Чтобы вырастить хвост, нужно затратить энергию, и потому, если он есть в наличии, его роль, вне всяких сомнений, принадлежит к числу условий для поддержания жизни. Но много разных животных может выживать и без него. В случае с автотомией хвоста некоторые ящерицы и саламандры, которые схвачены за хвост, будут отбрасывать его часть и таким образом получат возможность спастись бегством. Отброшенный хвост отвлекает внимание хищника от убегающего животного. У сцинков одного из видов (Scincella lateralis) особи, которые отбросили хвост, возвращаются на место, где они его потеряли, и, если они находят его, то заглатывают, чтобы возместить значительную часть затраченной энергии. Ящерицы могут частично регенерировать свой хвост, но при этом исходная структура с позвонками замещается хрящевым тяжом. Внешне хвост также может выглядеть иначе: тоньше или толще, или же иметь окраску, отличную от исходной. Медицинское сообщество, конечно, очень интересуется этим явлением, сознавая важность возможности регенерации тканей для людей, которым была сделана ампутация. В отличие от полной способности к регенерации у амфибий, частичная способность к ней у ящериц — это лучшая модель, демонстрирующая регенерацию ткани в хвосте в противоположность неспособности к регенерации у конечности.
Чтобы понять, как действует автотомия хвоста, полезно понять, как она появилась в процессе эволюции. Эволюционировала ли эта способность только один раз, или же много раз и независимо? У каких групп она есть, и что у них есть общего? Эти вопросы всё ещё остаются без ответа. Если рассматривать вымерших животных, то очень трудно, если вообще возможно сказать, какой вид не обладал способностью к регенерации придатков тела, поскольку в данном случае отрицательное свидетельство — это отсутствие свидетельств вообще. Но летопись окаменелостей представляет свидетельства наличия автотомии хвоста. Об этом можно сделать вывод по ископаемым остаткам, на которых сохранилась особого рода пластинка, служащая для разрыва хвоста. На ранних стадиях развития исходные эмбриональные сегменты, называемые сомитами, подвергаются ресегментации, при которой задняя половина сомита соединяется с передней половиной следующего за ним сегмента, и так далее. Пластинка для разрыва хвоста возникает на границе структур, образующихся из двух эмбриональных предшественников, которые объединяются на ранней стадии развития. Когда эту особенность смогли идентифицировать в окаменелых хвостовых позвонках, она была отмечена в разнообразных группах, в том числе у пермских капторинид и других базальных групп рептилий, возможно, у морских рептилий, называемых мезозаврами, возможно, у представителя пролацертиформ Tanystropheus[24], у клювоголовых, ящериц и морских крокодилов из юрского периода, и у ящерицы из среднего эоцена Германии.
Поскольку в ходе регенерации позвонки хвоста замещаются хрящевым тяжом, до недавнего времени мы могли только гадать, происходила ли регенерация у ископаемых таксонов. Хельмут Тишлигер из Баварии, который на протяжении ряда лет специализировался на использовании длинноволнового ультрафиолетового излучения для распознавания образований в окаменелостях, сумел открыть новые детали у окаменелостей, известных на протяжении долгого времени, например, отпечатки мягких тканей у берлинского экземпляра Archaeopteryx. Недавно, используя метод фотографирования в длинноволновом ультрафиолетовом свете, который показал ореол, соответствующий былому наличию хвоста, состоящего исключительно из мягких тканей, он обнаружил, что регенерация происходила у некоторых верхнеюрских рептилий отряда чешуйчатых из Германии.
Глава третья
Онтогенез позвоночных в ископаемом состоянии
Большинство ископаемых остатков позвоночных — это минерализованные части скелета. Поскольку скелет в большинстве случаев лишь частично сформирован у эмбрионов и на других ювенильных стадиях развития, неудивительно, что большинство ископаемых остатков принадлежит взрослым или почти взрослым особям, которые также крупнее, чем другие стадии жизненного цикла, и потому вероятность их обнаружения выше. Но ископаемые остатки эмбрионов и молодых особей существуют. В недавнем обзоре, посвящённом рептилиям, я и мой коллега Массимо Дельфино нашли сотни научных статей, подтверждающих наличие таких образцов (www.developmental-palaeontology.net); многие из них относятся к динозаврам. Некоторые окаменелости интерпретируются как только что выклюнувшиеся из яйца или новорождённые особи, но, учитывая неясности, окружающие эти интерпретации, их лучше считать особями «возраста, близкого к времени рождения», или «перинатальными» особями.
Идентификация ископаемого образца в качестве эмбриона неоспорима, когда он найден внутри ископаемого яйца. Более сложный случай — живородящие виды, то есть такие, которые не откладывают яиц, а рождают живое потомство, как это бывает у людей. Разграничить зародыша и последнюю трапезу может быть сложно, когда имеешь дело с ископаемыми остатками возрастом много миллионов лет. Зародыш — это маленький скелет «внутри» более крупного, и этот маленький скелет не несёт признаков повреждений, связанных с пищеварением. Анатомия и размер меньшего скелета, несомненно, имеют основополагающее значение для вывода о том, что он принадлежит к этому же самому виду. Противоречивые интерпретации не так уж и редки. Установление таксономической идентичности эмбрионов и ювенильных стадий — это также сложная задача. В некоторых случаях ассоциации настолько чёткие, что эмбрионы могут быть уверенно отнесены к конкретному виду. В других случаях отнесение образца к той или иной группе основано на некоторых уникальных особенностях, которые являются диагностическими для этой родословной ветви, но более точное таксономическое определение оказывается невозможным. Во многих случаях образцы, вначале описанные как представители различных видов, оказываются с большой степенью вероятности различными стадиями развития одного и того же вида. Редкие ископаемые остатки невзрослых особей — это словно моментальные снимки процесса индивидуального развития, и мы можем многое узнать о росте организма, если будем располагать их серией, или же если нам повезёт обнаружить критическую стадию, например, близкую ко времени рождения, которая сохранилась.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.