Электродинамика - [6]

Шрифт
Интервал


Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется маг­нитное поле, то фаза прибытия возрастает на величину инте­грала в (15.29).

Хотя для наших теперешних рассуждений в этом нет необ­ходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала j со знаком минус:


Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромаг­нитного поля. Именно этот закон и заменяет собой формулу F= q(E+vXВ). Мы сейчас, однако, будем говорить только о статическом магнитном поле.


Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назо­вем Ф>1; а через Ф>1= 0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины


(15.30)

Аналогично, фаза для траектории (2) равна



(15.31)

Интерференция волн в детекторе зависит от разности фаз



Разность фаз в отсутствие поля мы обозначим d = 0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад — по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается



(15.33)

Это уравнение сообщает нам, как под действием магнитного поля изменяется движение электрона; с его помощью мы мо­жем найти новые положения максимумов и минимумов интен­сивности.

Прежде чем сделать это, мы хотим, однако, поставить один интересный и важный вопрос. Вы помните, что в вектор-потен­циальной функции есть некоторый произвол. Две разные век­тор-потенциальные функции А и А', отличающиеся на гра­диент Сy некоторой скалярной функции, представляют одно и то же магнитное поле (потому что ротор градиента равен нулю). Они поэтому приводят к одной и той же классической силе qvXВ. Если в квантовой механике все эффекты зависят от векторного потенциала, то какая из многих возможных А-функций правильна?

Ответ состоит в том, что в квантовой механике продолжает существовать тот же произвол в А. Если в уравнении (15.33) мы заменим А на А' = А+Сy, то интеграл от А пре­вратится в


Интеграл от Сy вычисляется по замкнутому пути (1—2); но интеграл от касательной составляющей градиента по замкну­тому пути всегда равен нулю (по теореме Стокса). Поэтому как А, так и А' приводят к одним и тем же разностям фаз и к од­ним и тем же квантовомеханическим эффектам интерференции. И в классической, и в квантовой теории важен только ротор 4; любая функция А, у которой ротор такой, как надо, приводит к правильной теории.

Тот же вывод становится очевидным, если мы используем результаты, приведенные в гл. 14, § 1. Там мы показали, что контурный интеграл от А по замкнутому пути равен потоку В через контур, в данном случае потоку между путями (1) и (2). Уравнение (15.33) можно, если мы хотим, записать в виде


где под потоком В, как обычно, подразумевается поверхностный интеграл от нормальной составляющей В. Результат зависит только от В, т. е. только от ротора А.

Но раз результат можно выражать и через В и через А, то может создаться впечатление, что В удерживает свои позиции «реального» поля, а А все еще выглядит искусственным образо­ванием. Но определение «реального» поля, которое мы вначале предложили, основывалось на идее о том, что «реальное» поле не смогло бы действовать на частицу на расстоянии. Мы же беремся привести пример, в котором В равно нулю (или по крайней мере сколь угодно малому числу) в любом месте, где частицы могут оказаться, так что невозможно представить себе, что В непосредственно действует на них.

Вы помните, что если имеется длинный соленоид, по кото­рому течет электрический ток, то поле В существует внутри него, а снаружи поля нет, тогда как множество векторов А циркулирует снаружи соленоида (фиг. 15.6). Если мы создадим такие условия, что электроны будут проходить только вне соле­ноида (только там, где есть А), то, согласно уравнению (15.33),

соленоид будет все же влиять на их движение.


Фиг. 15.6. Магнитное поле и векторный потенциал длинного соленоида.

По классическим же воззрениям это невозможно. По классическим представлениям сила зависит только от В. Чтобы узнать, течет ли по соле­ноиду ток, частица должна пройти сквозь него. А квантовая механика утверждает, что наличие магнитного поля в соле­ноиде можно установить, просто обойдя его, даже не прибли­жаясь к нему вплотную!

Представьте, что мы поместили очень длинный соленоид ма­лого диаметра прямо тут же за стенкой между двумя щелями (фиг. 15.7). Диаметр соленоида должен быть намного меньше расстояния d между щелями. В этих обстоятельствах дифракция электронов на щели не приведет к заметным вероятностям того, что электроны проскользнут где-то близ соленоида. Как же все это повлияет на наш интерференционный эксперимент?


Еще от автора Ричард Филлипс Фейнман
«Вы, конечно, шутите, мистер Фейнман!»

Книга рассказывает о жизни и приключениях знаменитого ученого-физика, одного из создателей атомной бомбы, лауреата Нобелевской премии, Ричарда Филлипса Фейнмана. Эта книга полностью изменит ваш взгляд на ученых; она рассказывает не об ученом, который большинству людей представляется сухим и скучным, а о человеке: обаятельном, артистичном, дерзком и далеко не таком одностороннем, каковым он смел себя считать. Прекрасное чувство юмора и легкий разговорный стиль автора сделает чтение книги не только познавательным, но и увлекательным занятием.Для широкого круга читателей.


КЭД – странная теория света и вещества

Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!».


Фейнмановские лекции по физике. Современная наука о природе

В свое время преподаватели Калифорнийского технологического университета задумались о том, как можно было бы перестроить курс физики, чтобы сделать его более занимательным и современным. Изложение материала в старых учебниках было настолько скучным, что отбивало охоту к учению даже у самых усердных студентов. Ричард Фейнман с энтузиазмом подхватил эту идею и разработал новый, авторский курс лекций по общей физике. Читая эти лекции, он, по его собственным словам, ориентировался на самых сообразительных и одаренных, однако постарался учесть интересы и того студента, которого весь этот фейерверк мыслей может встревожить и отпугнуть, и выстроил материал таким образом, чтобы даже у этого студента осталось в голове основное ядро и понимание того, что он может получить в перспективе, продолжив изучение физики на более серьезном уровне.


Наука, не-наука и все-все-все

Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc.


Не все ли равно, что думают другие?

Эту книгу можно назвать своеобразным продолжением замечательной автобиографии «Вы, конечно, шутите, мистер Фейнман!», выдержавшей огромное количество переизданий по всему миру. Знаменитый американский физик рассказывает, из каких составляющих складывались его отношение к работе и к жизни, необычайная работоспособность и исследовательский дух. Поразительно откровенны страницы, посвященные трагической истории его первой любви. Уже зная, что невеста обречена, Ричард Фейнман все же вступил с нею в брак вопреки всем протестам родных.


Рекомендуем почитать
Небесные магниты. Природа и принципы космического магнетизма

Книга Дмитрия Соколова задумана не как исследование мира физических явлений, а во многом как сага о самой науке. Рассказывая о магнитных полях, автор стремится показать, как и для чего работают физики. Как устроены магнитные поля далеких звезд? Откуда они появляются, чем различаются, как и на что воздействуют? Как можно изменить магнитное поле Земли и каковы способы наблюдения за ним? В чем заключается феномен Курской магнитной аномалии? Каково строение магнитных полей спиральных галактик и Солнца и как с ними связаны магнитные циклы, которые ученые пытались отслеживать с давних времен? Ответы на эти и многие другие вопросы сопровождаются занимательными сюжетами из жизни ученых и истории отечественной и мировой науки.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.