Электродинамика - [5]
Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно — «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде
F = q(E+vXB), (15.26)
так что, как только заданы силы, движение оказывается полностью определенным. В любой области, где В = 0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А — не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.
§ 5. Векторный потенциал и квантовая механика
Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассматривали раньше.) В частности, постепенно сходит на нет понятие силы, а понятия энергии и импульса приобретают первостепенную важность. Вместо движения частиц, как вы помните, речь теперь идет уже об амплитудах вероятностей, которые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связываемые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики.
Фиг. 15.5. Интерференционный опыт с электронами.
Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энергиями взаимодействия двух нуклонов, а не с силой их взаимодействия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике векторный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с помощью А и j.
Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифракцию на двух щелях. На фиг. 15.5 показано то же устройство. Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвижным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С>1е>i>ф1и С>2е>i>ф>2, разность фаз d=Ф>1-Ф>2 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением
(15.27)
Как обычно, мы полагаем l= l/2p, где l — длина волны, отвечающая пространственному изменению амплитуды вероятности. Для простоты рассмотрим лишь те значения х, которые много меньше L; тогда можно будет принять
и
(15.28)
Когда х равно нулю, то и d равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда d равно п, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсивность получает волнообразный вид.
Теперь мы хотим сформулировать тот закон, которым в квантовой механике заменяется закон силы F=qvXВ. Этот закон будет определять собой поведение квантовомеханических частиц в электромагнитном поле. Раз все происходящее определяется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с ускорениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда достигает детектора, двигаясь по какой-то траектории, присутствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть
Книга рассказывает о жизни и приключениях знаменитого ученого-физика, одного из создателей атомной бомбы, лауреата Нобелевской премии, Ричарда Филлипса Фейнмана. Эта книга полностью изменит ваш взгляд на ученых; она рассказывает не об ученом, который большинству людей представляется сухим и скучным, а о человеке: обаятельном, артистичном, дерзком и далеко не таком одностороннем, каковым он смел себя считать. Прекрасное чувство юмора и легкий разговорный стиль автора сделает чтение книги не только познавательным, но и увлекательным занятием.Для широкого круга читателей.
Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!».
Эту книгу можно назвать своеобразным продолжением замечательной автобиографии «Вы, конечно, шутите, мистер Фейнман!», выдержавшей огромное количество переизданий по всему миру. Знаменитый американский физик рассказывает, из каких составляющих складывались его отношение к работе и к жизни, необычайная работоспособность и исследовательский дух. Поразительно откровенны страницы, посвященные трагической истории его первой любви. Уже зная, что невеста обречена, Ричард Фейнман все же вступил с нею в брак вопреки всем протестам родных.
В свое время преподаватели Калифорнийского технологического университета задумались о том, как можно было бы перестроить курс физики, чтобы сделать его более занимательным и современным. Изложение материала в старых учебниках было настолько скучным, что отбивало охоту к учению даже у самых усердных студентов. Ричард Фейнман с энтузиазмом подхватил эту идею и разработал новый, авторский курс лекций по общей физике. Читая эти лекции, он, по его собственным словам, ориентировался на самых сообразительных и одаренных, однако постарался учесть интересы и того студента, которого весь этот фейерверк мыслей может встревожить и отпугнуть, и выстроил материал таким образом, чтобы даже у этого студента осталось в голове основное ядро и понимание того, что он может получить в перспективе, продолжив изучение физики на более серьезном уровне.
Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc.
Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей.
Доказала ли наука отсутствие Творца или, напротив, само ее существование свидетельствует о разумности устройства мироздания? Является ли наш разум случайностью или он — отражение того Разума, что правит Вселенной? Объективна ли красота? Существует ли наряду с миром явлений мир идей? Эти и многие другие вопросы обсуждает в своей книге известный физик-теоретик, работающий в Соединенных Штатах Америки.Научно-мировоззренческие эссе перемежаются в книге с личными воспоминаниями автора.Для широкого круга читателей.Современная наука вплотную подошла к пределу способностей человеческого мозга, и когнитивная пропасть между миром ученого и обществом мало когда была столь широка.
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.
Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.