До предела чисел. Эйлер. Математический анализ - [31]
В 1772 году Эйлер доказал, что число M>31 простое. Любопытно, что прошло более 100 лет, прежде чем было найдено следующее простое число — M>127. Сделал это французский математик Эдуард Люка (1842-1891) в 1876 году. Также простыми являются M>61 и M>89, но они были открыты позже. Таким образом, на протяжении 104 лет Эйлеру принадлежал рекорд по открытию самого большого простого числа.
Квадратичный закон взаимности, превосходно сформулированный Гауссом в его Disquisitiones arithmeticae ("Арифметические исследования"), появился у Лежандра и Эйлера, который рассказал о нем Гольдбаху в письме 1742 года. Для начала определим, что такое символы Лежандра (p/q).
Предположим, что p и q — разные простые нечетные числа и
(p/q) =
0, если р ≡ 0 (mod q)
1, если х>2 ≡ р (mod q) разрешимое уравнение
-1, если х>2 ≡ p (mod q) неразрешимое уравнение.
Таким образом, Гауссу, а не Эйлеру, удалось доказать, что
(p/q) =
(q/p), если q ≡ 1 (mod 4)
(-q/p), если q ≡ 3 (mod 4)
Это можно выразить, хотя это и непросто, в одной формуле. Гаусс сделал это открытие в 19 лет и так гордился им, что назвал его aurum theorema — "золотой теоремой".
Делитель d произвольного числа n называется собственным делителем n, если 1 ≤ d < n. Число n — несобственный делитель n. Первое серьезное исследование Эйлера в области дружественных чисел относится к 1747 году. Два числа считаются дружественными, если сумма собственных делителей одного равна другому и наоборот. Это арифметическое понятие "дружбы" можно проиллюстрировать следующим примером. Возьмем числа 220 и 284. Собственными делителями 220 будут 1, 2, 4, 10,11,20,22,44,55 и 110; а 284 -1,2,4,71 и 142. Получаем, что
220 =1 + 2 + 4 + 10+11+20 + 22 + 44 + 55 + 110 = 284
284 = 1 +2 + 4 + 71 + 142 = 220.
Научная жизнь Лежандра (1752- 1833) началась под счастливой звездой. Он обладал выдающимися интеллектуальными способностями и достаточным состоянием, чтобы посвятить себя работе, ни на что не отвлекаясь. Успехов в математике Лежандр добился не сразу. Вместе с Лапласом он сделал важные разработки в области астрономии, открыв многочлены, позже названные многочленами Лежандра, зашел на малоизвестную территорию эллиптических функций и теории чисел, в рамках которой ему удалось, как он считал, решить старую задачу о квадратичном законе взаимности. Но в его исследовании были ошибки, как впоследствии установил Карл Фридрих Гаусс. За свои астрономические работы Лежандр был принят в члены Лондонского королевского общества. Он также участвовал в работе комиссии по созданию десятичной метрической системы, входившей в программу всеобщей рационализации, начатой после Французской революции. Хотя Лежандр и разделял многие революционные идеи, в эпоху Террора он был вынужден скрываться и потерял свое состояние. После этого он переписал и издал "Начала" Евклида с точки зрения того времени и современным языком, получив оглушительный и долгий успех у читателей. Придя к власти, Наполеон сразу же взял Лежандра под свою протекцию. Ученый, бывший к тому времени уже известным академиком, занялся изучением движения комет, разработал метод наименьших квадратов для вычисления траекторий, опередив на сей раз Гаусса. К этому же периоду относятся его исследования по распределению простых чисел, которое, как он предположил, подчинялось асимптотическому закону:
Это значение, очень близкое к современному, впоследствии совпало с фундаментальной теоремой о распределении простых чисел. Гаусс здесь оказался первым, но он так и не опубликовал свои результаты.
Приложение
Джон Непер (1550-1617) может по праву считаться изобретателем логарифмов. Он нарисовал две прямые линии следующим образом: на первой отложил отрезок с концами А и В, а параллельно ему провел прямую из точки А'. Затем он предположил, что есть некое тело, которое скользит по бесконечной прямой с постоянной скоростью. В каждой точке X' на прямой он отмечал соответствующую точку на отрезке АВ, но не случайным образом: X двигался со скоростью, равной расстоянию ХВ. Взяв х = ВХ и у = А'Х', Непер создал свой логарифм:
у - logx.
Непер взял AB - 10>7, что привело его к довольно сложным алгебраическим равенствам. Если N — число, a L — логарифм, то Непер вычислил N = 10>7 (1-10>-7)>L. Мы получаем
Здесь уже появляется постоянная е, так как
(1 - 10->7)10>7 ≈ 1/e.
Во многих старинных трактатах говорится о логарифмах Непера, или натуральных. Здесь мы имеем дело с путаницей, потому что натуральные логарифмы — это логарифмы по основанию е, в то время как все (почти) логарифмы Непера имеют основание 1/е. Это почти одно и то же, они различаются лишь знаком, а не абсолютным значением:
log>eN = -log>1/eN.
Сегодня для каждого положительного вещественного числа N, когда N - a>L, мы говорим, что L — логарифм N по основанию а, и записываем: L = log>a N.
Если мы задумаемся, то увидим, что логарифм основания всегда равен 1, и это его основополагающее свойство.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.