До предела чисел. Эйлер. Математический анализ - [32]
Самые распространенные основания — это а = 10,а = 2 и а- = е. Логарифмы по основанию 10 называются десятичными, по основанию 2 — двоичными, по основанию е — натуральными. Для натуральных логарифмов используется знак InN вместо log N.
Важным аспектом логарифма является то, что с его помощью упрощаются арифметические вычисления. Например:
Ν>1 · Ν>2 = a>L>1 · a>L>2 = a>L>1+L>2
⇒ log>a(N>1 · N>2) = L>1 + L>2 = log>aN>1 + log>aN>2.
Таким образом, логарифм произведения равен сумме логарифмов его множителей.
Если мы сделаем таблицу с двумя величинами, числами и десятичными логарифмами, то сможем сложить логарифмы и при помощи таблиц легко узнать произведение. И хотя сегодня можно без труда произвести умножение электронными калькуляторами, во времена, когда они еще не существовали, операция, помогающая заменить сложные расчеты в случаях произведений больших величин на простое сложение, имела огромное практическое значение.
Проследим за хитроумными рассуждениями Эйлера, но не будем забывать, что в некоторых местах они должны быть доработаны. Позже это сделал сам ученый. Возьмем знаменитый ряд Тейлора:
sinx = x - x>3/3! + x>5/5! - x>7/7! + ...
Мы знаем, что он равен нулю при х равном нулю, то есть если sinx = 0, когда х = 0, ± π, ±2π, ±3π...
Следовательно, предположив, что ряд ведет себя как многочлен, поскольку он и является длиннейшим многочленом, применение фундаментальной теоремы алгебры преобразит его в произведение одночленов вида х - α, где α — решение. Продолжим:
x - x>3/3! + x>5/5! - x>7/7! + ... = K(x)(x - π)(x + π)(x - 2π)(x + 2π)...
К — неизвестная константа. Производя вычисления в правой части равенства:
x - x>3/3! + x>5/5! - x>7/7! + ... = K(x)(x>2 - π>2)(x>2 - 4π>2)(x - 9π>2)...
следует отметить, что каждый член вида х>2 - λ>2π>2 справа равен нулю. А это происходит, только если
1 - х>2/(λ>2π>2) = 0.
Запишем члены правого выражения в следующей форме:
x - x>3/3! + x>5/5! - x>7/7! + ... = K(x)(1 - x>2/π>2)(1 - x>2/4π>2)(1 - x>2/9π>2)...
Теперь разделим на x:
sinx/x = 1 - x>2/3! + x>4/5! - x>6/7! + ... = K(1 - x>2/π>2)(1 - x>2/4π>2)(1 - x>2/9π>2)...
И, поскольку lim>x→0(sinx/x) = 1, получим, что K = 1. Итак:
1 - x>2/3! + x>4/5! - x>6/7! + ... = (1 - x>2/π>2)(1 - x>2/4π>2)(1 - x>2/9π>2)...
Этот ряд равен бесконечному произведению. Для Эйлера это не проблема. Подсчитаем порядок произведения и выделим члены произведения с x>2 в правой части:
- x>2/3! = -x>2/π>2 - x>2/4π>2 - x>2/9π>2 - ...
Разделив обе части на -x>2/π>2, получим
π>2/6 = 1+ 1/2>2 + 1/2>3 + 1/4>2 + ...,
что и требовалось доказать.
Эйлер был первым математиком, доказавшим тождественность ζ($) как ряда степеней и ζ($) как бесконечного произведения. Назовем р>к простое число, занимающее место k в ряде. Получим
Ниже можно увидеть, каким образом получается это равенство:
Для тех, кто знаком со сложным анализом, дзета-функция может быть расширена до мероморфной во всей комплексной области с простым полюсом s = 1, где остаток равен 1. Это дзета-функция, о которой говорил Риман и которая стала предметом его знаменитой гипотезы.
Чтобы упростить, насколько это возможно, наше объяснение, оттолкнемся от предположения, что задействованные в нем функции удовлетворяют всем необходимым условиям на производную и непрерывность.
Обозначим через S функционал (функцию функций), к которому мы применим вариационное исчисление, а через x>1, х>2 — экстремумы неизвестной функции:
S(ƒ) = ∫>x1>x2L(x>1,ƒ(x),ƒ'(x))dx.
Предположим, что решением является ƒ>0 и что функционал имеет здесь минимум; назовем α(x) функцию (которую мы будем "варьировать"), равную нулю в экстремумах x1, х>2. Поскольку в ƒ>0 функционал имеет минимум,
S(ƒ>0)≤S(ƒ>0+εα)
в окрестности ƒ>0. Вариационный размах
ƒ = ƒ>0 + εα
должен удовлетворять:
dS(ƒ>0 + εα)/dε|ε=0 = ∫>x1>x2dL/dε|>ε=0 = 0
Теперь вспомним, что
dƒ/dε = α,dƒ'/dε = α'.
Применим правило дифференцирования и проведем необходимые замены.
Получим
dL/dε = ∂L/∂ƒ dƒ/dε + ∂L/∂ƒ' dƒ'/dε = (∂L/∂ƒ)α + ∂L/∂ƒ'α'
A теперь проинтегрируем по частям и учтем предыдущую формулу:
Поскольку выражение слева — ноль, то нулем будет и выражение справа. Следовательно,
dL/dƒ = d/dx ∂L/dƒ' = 0
Таким образом, мы получили уравнения Эйлера — Лагранжа, которые в приложениях обычно приводят к дифференциальным уравнениям второго порядка.
5. КОМПЛЕКСНЫЕ ЧИСЛА
Эйлер вывел свою фундаментальную формулу, из которой впоследствии получил еще несколько из простых рядов Тейлора. Напомним, что степени ведут себя так:
i0 = 1,i1 = i,i2 = -1,i3 = -i,
i>4 - 1, i>5 = i, i>6 = 1,i7 = i и так далее.
Напомним также, что ряды степеней е и тригонометрических функций синус и косинус раскладываются в ряд Тейлора или степенной ряд следующим образом:
ex = x>0/0! + x>1/1! + x>2/2! + x>3/3! + x>4/4! + ...
cosx = x>0/0! + x>2/1! + x>4/4! + x>6/6! + ...
sinx = x>1/1! + x>3/3! + x5/5! + x>7/7! + ...
Произведем вычисления:
e>ix = (iz)>0/0! + (iz)>1/1! + (iz)>3/3! + (iz)>4/4! + (iz)>5/5! + (iz)>6/6! + (iz)>7/7! + (iz)>8/8! + ... = z>0/0! + i(z>1/1!) + z>2/2! + i(z>3/3!) + z>4/4! + i(z>5/5!) + z>6/6! + i(z>7/7!) + z>8/8! + ... = (z>0/0! + z>2/2! + z>4/4! + z>6/6! + z>8/8! + ...) + i(z>1/1! + z>3/3! + z>4/4! + z>6/6! + z>8
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.