До предела чисел. Эйлер. Математический анализ - [29]

Шрифт
Интервал

Р(1) = 1

Р(2) = 2

P(3) = 3

Р(4) = 5

Р(5) = 7

P(6) = 11

Р(7) = 15

Р(8) = 22

P(9) = 30

P(10) = 42.

Никаких странностей не наблюдается, мы видим только, что p возрастает. Можно доказать, что

р(100) = 190569292.


СРИНИВАСА РАМАНУДЖАН АЙЕНГОР

Этот индийский математик родом из далекой страны, с непростой судьбой и необыкновенным талантом, привнес нотку экзотики в научный мир своего времени. Он родился в Эроде, в штате Тамил-Наду, и был типичным представителем своего общества, очень религиозным и строго соблюдавшим вегетарианство. Рамануджан был гением-самоучкой. По совету друзей он отправил несколько писем в Лондон, в которых рассказывал о своих результатах. Одно из них попало в руки к Годфри Харолду Харди (1877-1947). Вместе со своим другом и коллегой Джоном Литлвудом (1885- 1977) Харди проанализировал содержание писем, в которых говорилось обо всем сразу: об открытиях, уже сделанных, в том числе и самим Харди, и о новых формулах, свидетельствовавших о необыкновенных математических способностях. По приглашению Харди Рамануджан приехал в Англию и впоследствии был избран членом кембриджского Тринити-колледжа и Королевского общества. Многие его разработки еще не до конца изучены, но все единодушно отмечают их красоту, глубину, изобретательность и новизну. Рамануджан углубил работы Эйлера по разбиению, и это принесло свои плоды: многое из того, что сегодня об этом известно. — плод его исследований. Благодаря гению Рамануджана, мы располагаем "простым" инструментом, с помощью которого можем узнать примерное количество разбиений любого числа:


Его можно получить с помощью калькулятора. При желании мы можем получить точные цифры, а не приблизительные, но процесс будет немного сложнее.



Ученые получили необыкновенно длинные результаты, выявили малейшие различия между разбиением четных и нечетных чисел (состоящих только из четных или нечетных чисел), изобрели сложнейшие арифметические инструменты. Большая часть удивительных работ Эйлера основана на методах, развитых Абрахамом де Муавром, которые заключаются в игре со степенными рядами. Так он получал то, что в то время называлось производящими функциями последовательности, то есть хитроумные алгебраические трюки, с помощью которых ученые пытались сымитировать реальность. Уже в 1742 году Эйлеру пришла в голову идея найти производящую функцию разбиений, и после долгих лет работы он пришел к ней: оттолкнувшись от ряда

1/(1 - х) = 1 + х + х>2 + х>3 + ...,


он вывел формулу


Развивая бесконечное произведение справа, можно доказать, что различные разбиения числа n появляются в скрытой форме в группах степеней меньших n, которые в сумме дают n. Например, возьмем n = 4 и посмотрим, сколько х4 мы получим:

(1 + х + х>2 + x>3 + ...) (1 + х>2 + х>4 + х>6 +...)(1 + х>3 + x>6 + х>9+...)...

В результате мы получим 5х4. и следовательно, р(4) = 5. Отсюда Эйлер вывел метод для вычисления р(n), но, к сожалению, это рекурсивный метод, который позволяет вычислить р(n), только если мы знаем предшествующие значения:

р(n) = р(n - 1) +р(n - 2) - р(n - 5) - р(n - 7) + р(n - 12) + р(n - 15) - р(n - 22) - ...


ЧИСЛА БЕРНУЛЛИ

Эти числа были названы в честь Якоба Бернулли, который впервые рассмотрел их в 1713 году в своем сочинении Ars conjectandi ("Искусство предположений"). Эти числа встречаются при вычислении сумм степеней целых положительных чисел:

1 + 2>2 + З>2 + 4>2 + ... + k>2

1 + 2>3 + З>3 + 4>3 + ... + k>3

1 + 2>4 + З>4 + 4>4 + ... + k>4

1 + 2>5 + З>5 + 4>5 + ... + k>5,

или, говоря языком Эйлера, вычислении сумм


Мы имеем


где В>i — числа Бернулли. Чтобы пояснить предыдущую формулу, приведем простой пример — сумму квадратов простых чисел. Применив формулу при р - 2, получим

1>2+2>2 + ... + n>2 = 1/3(B>0n>3 + 3B>1n>2 + 3B>2n>1) = 1/3(n>3 + 1/2n>2 + 1/2n).

Эйлер вычислил первые 30 чисел Бернулли. Это грандиозная задача, учитывая, что 30-е число выглядит так:

8615841276005/14322.

Наконец, числа Бернулли появляются в выражении, которое Эйлер вывел для ζ(2n) в ходе дальнейших исследований после решения Базельской задачи. Оно выглядит так:

ζ(2n) = (-1)>n+1(2π)>2nB>2n/2(2n)!.

Числа Бернулли используются в современной записи формулы суммирования Эйлера — Маклорена, хотя сам Эйлер их не заметил, когда применил формулу, чтобы приблизительно сосчитать значение


и найти первые шесть его цифр.


ЭЙЛЕР И ПРОСТЫЕ ЧИСЛА

Эйлеру не удалось разгадать все тайны простых чисел, тем не менее он выполнил много исследований на эту тему, а также на другие, тесно с ней связанные, такие как функция Эйлера φ, числа Мерсенна или квадратичный закон взаимности.


До сих пор математики напрасно пытались открыть порядок в последовательности простых чисел, и мы имеем все основания предполагать, что речь о идет о тайне, которую человеческий разум никогда не раскроет.

Эйлер


В работе Variae observationes circa series infinites ("Различные замечания о бесконечных рядах"), опубликованной в 1744 году, Эйлер применил формулу, ставшую одной из самых известных в области простых чисел, — произведение Эйлера, которое мы подробно рассмотрим в приложении 3.


При s = 1 слева возникает гармонический ряд, стремящийся к бесконечности. Следовательно, к ней должен стремиться и результат справа. Но если это так, то произведение не может быть конечным. Следовательно, оно бесконечно, и поскольку в каждом множителе есть простые числа, то, следовательно, их существует бесконечно много. Так Эйлер нашел еще одно доказательство бесконечности простых чисел. Однако ученый хотел заглянуть еще глубже и найти плотность простых чисел. Мы знаем, что они бесконечны, но насколько плотно они расположены? Эйлер доказал, что ряд, ограниченный только простыми членами,


Еще от автора Хоакин Наварро
Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.