До предела чисел. Эйлер. Математический анализ - [25]
Эйлер использовал формулу Муавра, не приведя никакого ее доказательства. Он совместил ее с другой формулой, названной его именем и созданной еще в Базеле (как мы видели в главе 2):
е>ix = cosx + isinx,
и вывел, пользуясь простым правилом возведения в степень, выражение, которое сегодня мы записали бы так:
е>х+iy = е>х (cosу + isiny).
Эйлер пришел к этим результатам, а также к другим, имеющим огромную важность, отталкиваясь от простого ряда Тейлора:
ex = Σ>n=0>∞x>n/n! = 1 + x + x>2/2! + x>3/3! + x>4/4! + ...
В приложении 5 мы более подробно объясним, как Эйлер вывел свою формулу из этого выражения.
Если мы подставим вместо х число π, то, по формуле Эйлера, получим:
e>ix = cosπ + isinπ = -1 + i0 = -1,
а перенеся -1:
e>ix + 1 = 0.
Многие математики считают это уравнение, известное как тождество Эйлера, самым красивым в этой науке.
В Introductio in analysin infinitorum можно также обнаружить понятие логарифма в форме, позволяющей решить задачу отрицательных логарифмов, которая не давала Эйлеру покоя со времен его базельской юности. Он совершенно правильно определял их как результат операции, обратной возведению в степень:
a>logº>x = x.
а это значит, что логарифм в области комплексных чисел имеет бесконечное число значений, которые отличаются только четным произведением π, то есть 2kπ. В частности:
ln(-1) = iπ + 2kπ(k € Z),
что приводит нас к таким выражениям, как
i>i = e>ilni = e>(-π/2) ~ 0,2078795764.
В этой работе также впервые появляются число е, формула Муавра, ряд степеней sinx и cosx, понятие функции, несколько степенных рядов (а также представлено другое решение Базельской задачи) и так далее, объясняются и систематизируются начала аналитической геометрии, неразрывно связанной с анализом. Среди затронутых тем можно найти косоугольные и полярные координаты, преобразование координат, асимптоты, кривизну, пересечение кривых, касательные и многие другие. Подход Эйлера к этим понятиям не просто современен, он действительно соединил точки зрения Ньютона и Лейбница и объяснил раз и навсегда, что дифференцирование и интегрирование являются обратными друг другу действиями, двумя сторонами одной медали. В Institutiones calculi differentialis и Institutiones calculi integralis содержится первое исследование рядов, непрерывных дробей, дифференциальных уравнений, включая частные производные, максимумы, минимумы и так далее. Эйлер начал интеллектуальную схватку длиною в жизнь с числовыми рядами: никто не знал, сходятся ли эти бесконечные суммы, и если сходятся, то к чему. В некоторых случаях расхождение было очевидным, как, например, в так называемом гармоническом ряде:
1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + ... ,
который итальянский математик Пьетро Менголи сгруппировал так:
1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) +
+ (1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16) + ...
≥ 1 + 1/2 + 1/2 + 1/2 + 1/2 + ... ,
показав, что его сумма бесконечна. Другие же вызывали недоумение. Рассмотрим пример:
1 - 1 + 1 - 1 + 1 - 1 + ...
В таком виде кажется, что его сумма равна 0:
(1-1) + (1-1) + (1-1) + ... = 0,
а если сгруппировать его так, то сумма равна 1:
1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + ... = 1.
На самом деле оба результата неправильны. Эйлер, как и другие математики того времени, предпочитал исходить из известного ряда
1/(1-x) = 1 + x + x>2 + x>3 + x>4 + x>5 + ...
Подставив вместо х число -1, он пришел к
1/2 = 1/(1- (-1)) = 1 + (-1) + (-1)>2 + (-1)>3 + (-1)>4 + (-1)>5 + ...
= 1 - 1 + 1 - 1 + 1 - 1.
то есть ни 1, ни 0: Эйлер утверждал, что сумма равна 1/2.
К арсеналу уже известных к тому времени рядов
Эйлер постепенно добавил много собственных результатов: решение Базельской задачи; формулу суммирования Эйлера — Маклорена, которая улучшала сходимость, если таковая наблюдалась; преобразование рядов через конечные и последовательные разности; а также важные открытия в области расходящихся рядов. Фактически, в 1755 году, то есть в эпоху, когда еще не существовало понятие предела, ученый уже различал сходящиеся и расходящиеся ряды. Среди рядов, суммированных Эйлером, мы находим
π/(3√3) = 1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...
π/(2√2) = 1 + 1/3 + 1/5 + 1/7 + 1/9 + 1/11 + ...
π/3 = 1 + 1/5 - 1/7 - 1/11 + 1/13 - 1/17 + ...
π>2/(8√2) = 1 - 1/3>2 - 1/5>2 + 1/7>2 + 1/92 + ...
π>2/(6√3) = 1 - 1/5>2 - 1/7>2 + 1/112 + 1/13>2 + ...
1 -1! + 2! -3! + ... = 0,596347362123...
Он также открыл два новых ряда. Один — данная последовательность степеней:
arxtgz = z - z3/3 + z5/5 + z7/7 + ... ,
а вторым был первый ряд Фурье в истории, который Эйлер описал в 1744 году в письме Гольдбаху, то есть задолго до того, как Жозеф Фурье (1768-1830) начал свои знаменитые исследования. И даже до того, как Фурье родился.
1/2x = sinx - 1/2 sin 2х + 1/3 sin Зx - ...
Вклад Эйлера в теорию чисел огромен, и его подробное изложение не является целью этой книги. Достаточно сказать, что только Карл Густав Якоб Якоби (1804-1851) и Сриниваса Рамануджан Айенгор (1887-1920) могут сравниться с ним по значению своих работ в этой области. Еще одним важным разделом математики, интересовавшим Эйлера, были дифференциальные уравнения. Здесь его самым знаменитым открытием, возможно, является метод Эйлера, позволяющий приближенно решать дифференциальные уравнения первого порядка.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.