До предела чисел. Эйлер. Математический анализ - [24]

Шрифт
Интервал

Тем не менее, несмотря на обширную деятельность ученого, нельзя думать, что все написанное им было верным. В работах Эйлера встречается неизбежный недостаток той эпохи — отсутствие точности в операциях и определениях. Многие его догадки справедливы не потому, что строго доказаны, а просто потому, что они работают. В XIX веке ученые потратили немало сил, чтобы дать основу дерзким предположениям Эйлера, определив такие понятия, как предел, сходимость или непрерывность, с помощью которых удалось залатать дыры в доказательствах многих его предположений. Математика стала скучнее, но точнее.


ФУНДАМЕНТАЛЬНАЯ ТРИЛОГИЯ: ВЕРШИНЫ АНАЛИЗА

Эйлер оставил след в огромном количестве самых разных областей знания и написал работы обо всем, что вызывало его интерес, однако для многих он стал в первую очередь отцом современного математического анализа, как если бы это было его основной заслугой. В предыдущем параграфе мы рассмотрели вклад Эйлера в вариационное исчисление. В последующие годы ученый — видимо, вдохновленный своим успехом — углубил и структурировал обширные знания по анализу в нескольких трактатах.

В 1748 году он опубликовал Introductio in analysin infinitorum ("Введение в анализ бесконечных"), шедевр в двух томах, который вместе с Instituciones calculi differentialis ("Дифференциальное исчисление") 1755 года и с трехтомным Instituciones calculi integralis ("Интегральное исчисление") 1768-1770 годов входит в непревзойденную по сей день научную трилогию. Появление этих работ разделило математику на до и после, особенно в области анализа. Франсуа Араго (1786-1853) назвал Эйлера "анализом, воплощенном в человеке", а историк математики Карл Бенджамин Бойер (1906-1976) ставил его работы в один ряд с трудами Евклида, Ньютона, Гаусса и Декарта и даже впереди их всех, поскольку они имеют большее педагогическое значение. Вот что пишет Бойер:


"Можно сказать, что Эйлер сделал с исчислением Ньютона и Лейбница то, что Евклид сделал с геометрией Евдокса или Ви- ет — с алгеброй Кардано и Аль-Хорезми. Эйлер взял дифференциальное исчисление Лейбница и метод Ньютона и поместил их в более общую область математики, которая с этого момента стала называться анализом, то есть изучением функций и бесконечных процессов".


Это изменение касалось не только содержания, но и математической символики. В качестве упражнения может быть полезно почитать эти книги и убедиться, что они понятны и сегодня. Клиффорд Трусделл (1919-2000), выдающийся американский физик, писал по этому поводу:


"Эйлер был первым ученым в западной цивилизации, кто стал писать о математике ясным и легким для чтения языком. Он объяснил своим современникам, что вычислению бесконечно малых величин может научиться, приложив небольшие старания, любой разумный человек. Он справедливо славился чистотой своего стиля и честностью, с которой обращался к читателю, когда испытывал трудности".


Некоторые разработки Эйлера в области анализа интересны только узким специалистам, и мы ограничимся их перечислением: это гипергеометрические ряды, гиперболические функции, дифференциальные уравнения, эллиптические функции и комплексные интегралы.

База, на которой основано одно из самых важных открытий, описанных в Introductio in analysin infinitorum,— это формула Муавра. Современный математик записал бы ее так:

(cosx + isinx)>n = cosnx + isinnx.

Сам де Муавр записал ее в 1730 году в более сложном виде, но в соответствии с традицией того времени:



АБРАХАМ ДЕ МУАВР

Абрахам де Муавр родился в 1667 году во французском регионе Шампань, однако карьеру сделал в Великобритании, куда бежал от религиозных преследований протестантов, начавшихся после того, как в 1685 году Людовик XIV отменил Нантский эдикт. В Лондоне он оказался в стесненных обстоятельствах и зарабатывал на жизнь частными уроками и игрой в шахматы. Де Муавр близко подружился с Эдмундом Галлеем (1656-1742) и Ньютоном, с которым он каждый день пил кофе и который, как говорят, каждый раз, когда ему задавали вопрос о вычислениях, отвечал: "Спросите де Муавра, он разбирается в этом лучше". Кроме этого, де Муавр дружил с Лейбницем, Эйлером и семьей Бернулли, однако все эти связи не помогли ему найти постоянную работу. Он был превосходным математиком: именно ему принадлежит введение в теорию вероятностей независимых событий — результат, приближающий к понятию распределения статистических данных в виде колокола Гаусса. Также де Муавр изучал вопрос ренты в работе Annuities in life ("Пожизненная рента"), опубликованной в 1724 году и основанной на одном из сочинений Галлея. В области анализа де Муавру принадлежит заслуга асимптотического представления факториала. Впоследствии эта формула станет известна как формула Стирлинга:

n! = √(2πn)(n/e)>n.


Но главным его достижением стала формула для комплексных чисел, которая в современной записи выглядит так:

(cosx + /sinx)>n = cosnx + isinnx.

Де Муавр остался холостяком и жил в бедности, но с гордостью изгнанника вспоминал, что в 1754 году Парижская академия наук избрала его своим иностранным членом. Умер ученый в Лондоне, и говорят, что он предсказал день своей смерти. Якобы де Муавр заметил, что каждый день спит на 15 минут больше, и, произведя подсчеты, вычислил день, когда должен был проспать 24 часа: 27 ноября 1754 года. Так и оказалось.


Еще от автора Хоакин Наварро
Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.