До предела чисел. Эйлер. Математический анализ - [19]
389965026819938 = 5569 + 389965026814369.
Гольдбах родился в Пруссии, но большую часть своей жизни провел в России, где искал новые таланты для Петербургской академии и работал в ней же секретарем. Он дружил с Лейбницем, Абрахамом де Муавром, Николаем Бернулли (а также с другими членами этой выдающейся семьи) и Эйлером, чью кандидатуру он усиленно продвигал и в переезде которого в Россию сыграл решающую роль. Он даже стал учителем царевича Петра II и занимал высокие посты в министерстве иностранных дел, где работал криптографом. Гольдбах занимался разными областями науки и добился хороших результатов в изучении числовых последовательностей, в особенности благодаря сотрудничеству с Эйлером. Личность последнего, видимо, стимулировала Гольдбаха в работе. Например, не все знают, что именно Гольдбах, будучи не в состоянии решить Базельскую задачу самостоятельно, привлек к ней Эйлера, который впоследствии прославился найденным решением. Переписка Эйлера и Гольдбаха, необыкновенно обширная и полная математических рассуждений, насчитывает почти 200 писем. Об уважении, которое Эйлер питал к Гольдбаху, свидетельствует хотя бы тот факт, что он выбрал коллегу крестным отцом своего первенца.
Сегодня о Гольдбахе вспоминают не в связи с его теоремами, а с проблемой, носящей его имя. В 1992 году вышел роман "Дядя Петрос и проблема Гольдбаха" Апостолоса Доксиадиса. Издательство Faber&Faber предложило премию в миллион долларов, действительную два года, тому, кто найдет решение. Скорее всего, издатели знали, что никакого ответа они не получат. Пока эта проблема решена только в испанском художественном фильме 2007 года "Западня Ферма" режиссеров Луиса Пьедраиты и Родриго Сопеньи.
В этой паре, не так давно найденной нумерологом Йоргом Рихстейном, одно слагаемое состоит из четырех цифр, а второе — из 15, при этом оба они являются простыми числами. До сих пор никому не удалось доказать ни одну из двух гипотез. Слабую можно считать почти доказанной, поскольку известно, что она работает для всех чисел больше 10 >346. Чтобы доказать ее полностью, надо разобраться с нерешенными случаями: начать с 7 и дойти до 10 >1346. Это очень сложно: любой существующей вычислительной машине потребуется на это большее количество секунд, чем число атомов во Вселенной.
С сильной проблемой Гольдбаха ситуация яснее: ни одного ее доказательства не существует. Найти его не удалось даже Эйлеру. С помощью супервычислителей Cray проблему проверили для огромных чисел, доходящих до 10>18, но общее доказательство так и не найдено. Тем не менее математикам удалось добиться значительных результатов. Например, китайский ученый Чен Джингрун (1933-1996) в 1966 году доказал, что каждое достаточно большое число можно представить в виде суммы двух других, из которых одно — простое, а второе — произведение максимум двух простых.
Вариационное исчисление может считаться обобщенным исчислением и поэтому однозначно является частью анализа. Его цель заключается в нахождении пути, кривой, поверхности и так далее, для которых определенная функция имеет стационарное значение — как правило, максимальное или минимальное. Исчисление имеет основополагающее значение для физики, в частности в таких областях практического применения, как теория упругости и баллистика, которые вызывали большой интерес уже во времена Эйлера. Неудивительно, что ученый пришел к вариационному исчислению в 1744 году, через три года после переезда в Берлин, когда он занялся физикой, а именно принципом наименьшего действия в механике.
РИС. 5
РИС . б
РИС. 7
Путь, пройденный лучом света на поверхности от А до В, равен отрезку А’ В. Следовательно, он проходит наименьшее расстояние.
Как и все основные проблемы в математике, вопрос о максимумах и минимумах имел длинную историю. Достаточно вспомнить классическую задачу — или, скорее, легенду — о Ди- доне, королеве Тира. Она бежала с последними оставшимися ей верными людьми и достигла берегов, на которых ей суждено было создать свое царство, Карфаген. Она попросила местного короля Иарбанта дать ей кусок земли, где могли бы жить ее подданные. Тот согласился с одним условием: владения Дидоны должны быть равны площади, которую она сможет покрыть воловьей шкурой. Чтобы упростить объяснение, представим, что побережье — прямая линия, без заливов, бухт и мысов. Царица разрезала шкуру на тончайшие ремешки так, что получилась длинная веревка. Она соединила ее концы (рисунок 5), а затем применила базовый принцип изопериметров, то есть площадей, периметры которых имеют одинаковую длину. Одна часть этого периметра проходила вдоль моря, а оставшаяся должна была охватить как можно большую площадь. Решение состояло в том, что веревка из воловьей кожи должна располагаться в виде полукруга, диаметр которого — побережье (рисунок 6). Задача Дидоны относится к разряду классических изопериметриче- ских задач, которые часто встречаются в физике. Она относится к более широкой категории задач, похожих друг на друга, поскольку в них всегда надо найти экстремум функционала — максимум или минимум — при заданных неизменных условиях. Существует наглядный и к тому же очень древний пример, автором которого является Герон Александрийский (ок. 10- 70). Он задался вопросом об отражении света, заметив, что луч, идущий от А к В, отражаясь от зеркала, следует по самой короткой траектории (рисунок 7).
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.