Дилемма заключенного и доминантные стратегии. Теория игр - [4]

Шрифт
Интервал

/a>n-1 при >n, стремящемся к бесконечности, где a>n — член последовательности Фибоначчи.

В одном из своих основных трудов Liber quadratorum («Книга квадратов»), опубликованном в 1225 году, Фибоначчи описывает математический турнир, прошедший при дворе короля Сицилии Федериго II, на котором он нанес поражение Иоанну Палермскому. На этих интеллектуальных турнирах, проводимых в подлинно средневековом стиле, каждый участник должен был предложить сопернику определенное число задач. Победителем объявлялся тот, кто решил больше задач за меньшее время. При этом должно было выполняться еще одно условие: участник, предложивший задачу, должен был знать ее решение. Одна из задач, упомянутых Фибоначчи, формулируется так: нужно найти такое число, что если прибавить или вычесть из его квадрата 5, то в обоих случаях результатами также будут квадраты. Любопытно, что число 1225, совпадающее с годом публикации «Книги квадратов», является квадратом. Это единственный год жизни Фибоначчи, обладающий подобным свойством: предыдущим квадратом является 1156, а следующим — 1296.

Примерно в то же время арабский писатель и ученый Ибн-Халликан первым изложил знаменитую легенду об изобретателе шахмат, «Историю Сисса бен Дахира и индийского короля Ширхама» (1256). По легенде, Ширхам так полюбил игру в шахматы, придуманную Сиссой бен Дахиром, что разрешил ему выбрать себе любой подарок, какой тот пожелает. Сисса попросил короля положить пшеничное зернышко на первую клетку доски, 2 — на вторую, 4 — на третью, 8 — на четвертую и так далее до клетки 64, каждый раз удваивая число зерен. Правитель посчитал эту просьбу слишком скромной, но затем увидел, что ему никогда не удастся выполнить ее. Действительно, 2>0 + 2>1 + ...+ 2>62 + 2>63 = 2>64 - 1 = 18446744073709551615, что в разы превышает весь годовой урожай пшеницы во всем мире.

Страница из«Книги абака» Фибоначчи.


Также в XIII веке, точнее в 1283 году, согласно повелению короля Альфонсо X Мудрого была написана «Книга игр» (Libro de los juegos). Хотя в ней больше внимания уделяется играм, чем математике, она содержит интересный анализ типов игр (как азартных, так и стратегических), популярных в то время, а также все знания, накопленные на тот момент относительно выигрышных стратегий для этих игр. Помимо шахмат и различных азартных игр, в этой книге описывается алькерк — «стратегическая» игра, то есть та, в ход которой не вмешивается случай. Это старейшая из известных нам игр такого типа.

«КНИГА ИГР» АЛЬФОНСО X МУДРОГО

В 1283 году король Альфонсо X Мудрый повелел написать «Книгу игр», известную также под названием «Книга шахмат, игр в кости и доски». Книга содержит 98 страниц со 150 цветными иллюстрациями. В ней рассказывается о наиболее известных настольных играх той эпохи: шахматах, алькерке, играх в кости и других настольных играх, среди которых отметим нарды.

Единственное издание этой книги хранится в библиотеке монастыря Сан-Лоренцо дель Эскориал близ Мадрида. Это первая из книг в истории западной цивилизации, посвященная настольным играм. Содержащаяся в книге информация и великолепные цветные иллюстрации обладают огромной ценностью. Благодаря «Книге игр» до нас дошли сведения об играх, популярных на Пиренейском полуострове 800 лет назад.

Иллюстрация из«Книги игр»Альфонсо X Мудрого, на которой изображена игра в алькерк.


АЛЬКЕРК- ДРЕВНЯЯ ИНТЕЛЛЕКТУАЛЬНАЯ ИГРА

Алькерк — игра для двух игроков, описанная в «Книге игр» Альфонсо X Мудрого. Доска имеет размеры 5x5 клеток, у каждого игрока 12 фишек. Они располагаются на доске так, что центральная клетка остается незанятой. Цель игры — убрать с доски все фишки соперника. В этом алькерк очень похож на современные шашки. Первое письменное упоминание об этой игре встречается в арабской рукописи X века «Китаб аль-Агхани», где алькерк фигурирует под названием киркат. Это позволяет предположить, что на Пиренейский полуостров игру занесли арабы. Однако многие источники дают основания полагать, что игра намного древнее: археологами были найдены старинные доски для алькерка и рисунки, которые также могли использоваться для игры.

С другой стороны, множество версий этой игры на той же доске существовало в Индии и Марокко, на досках другой формы — в Индии и на Шри-Ланке. Существует множество похожих игр, начиная от традиционных шашек и заканчивая фанороной с острова Мадагаскар или игрой авитлаканнаи североамериканских индейцев зуни.

Сверху вниз: стартовые позиции при игре в алькерк, фанорону и авитлаканнаи.


Игры и математика в эпоху Возрождения

Математику эпохи Возрождения представляют главным образом итальянские алгебраисты, среди которых Тарталья, Кардано, Бомбелли, Феррари и дель Ферро, которые занимались в основном алгеброй и решением уравнений. Говоря о математике и играх, прежде всего следует упомянуть Тарталью и особенно Кардано. Самоучка, ставший преподавателем математики, Никколо Фонтана (1499—1557), известный под именем Тарталья («заика»), знаменит благодаря найденному им алгоритму решения кубических уравнений. Также он первым перевел на итальянский язык работы Евклида и Архимеда. Соперничая со Сципионом дель Ферро в духе средневековых турниров, Тарталья одержал победу, решив все предложенные соперником задачи, большинство из которых заключались в решении кубических уравнений. По-видимому, именно это привлекло внимание Кардано, который попросил показать ему формулу для решения подобных уравнений. Тарталья согласился, и Кардано не замедлил опубликовать его результаты под своим именем, чем сильно обидел Тарталью.


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Знание-сила, 1997 № 03 (837)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.