Дилемма заключенного и доминантные стратегии. Теория игр - [3]

Шрифт
Интервал

Супруга Рамзеса II царица Нефертари за игрой в сенет. Этот рисунок находится на стене передней залы ее гробницы.


Например, задача 24 папируса Ахмеса гласит: «Целое и седьмая его часть дают 19», что на современном языке выглядит так: «Найдите такое число, которое при сложении с одной седьмой его частью дает 19». Эта задача решается элементарно с помощью уравнения первой степени, но подобный прием, очевидно, был неизвестен древним египтянам. В папирусе Ахмеса приводится интересный способ ее решения, называемый методом ложного положения, который использовался древними во многих арифметических задачах. В этой задаче он применяется следующим образом. Ахмес предполагает, что решением является 7, и выполняет следующие действия: 7+ 7·1/7 = 8. Результат не равен 19, следовательно, нужно найти число, которое при умножении на 8 дает 19. Иными словами, нужно поделить 19 на 8. Эту операцию древние египтяне выполняли так:

(8 ×) 2 = 16,

(8 ×) 1/4 = 2,

(8 ×) 1/8 = 1.

Откуда следует: 19 : 8 = 2 + 1/4 + 1/8.

Следовательно, 7 нужно умножить на (2 + 1/4 + 1/8). Имеем: 14 + (1 + 1/2 + 1/4) + (1/2 + 1/4 + 1/8) = 16 + 1/2 + 1/8, что в современной записи выглядит как 16 + 5/8, или 16,625.


ТЫСЯЧЕЛЕТНЯЯ ИГРА СЕНЕГ

Одна из древнейших известных нам настольных игр называется сенет. В древнеегипетских гробницах найдены многочисленные рисунки и мозаики, где изображены игроки в сенет. Несмотря на это, ее точные правила неизвестны, хотя в 1978 году Тимоти Кендалл воссоздал игру на основе имеющихся источников. Он отмечает, что сенет играл важную роль в похоронных обрядах: усопший должен был сыграть партию с судьбой в присутствии бога Осириса. В «Книге мертвых» говорится, что от результата этой партии зависела дальнейшая загробная жизнь. Задача этой игры, рассчитанной на двух игроков, — первым довести до конца доски семь фишек. Вместо игральных костей используются четыре палочки, плоские с одной стороны и выпуклые с другой. Броском палочек можно получить одно из пяти возможных значений — по числу палочек, упавших плоской стороной вверх.

Доска для игры в сенет. Изображено начальное положение игры. Слева — четыре палочки, которые использовались вместо игральных костей.


Читатель отметит своеобразный способ выполнения операций, а также использование дробей.

Для деления Ахмес находит три степени числа 2, которые в сумме дают 19. Это 16, 2 и 1. Затем он находит восьмую часть для каждого из этих чисел (получив 2, 1/4, 1/8) и выполняет сложение.


НАСТОЛЬНАЯ ИГРАУРСКИХ ЦАРЕЙ. ИСТОРИЯ ДЛИНОЙ В 4 000 ЛЕТ

Наряду с египетской игрой сенет, это одна из древнейших известных нам игр. Украшенная драгоценностями доска для этой игры, найденная в шумерском городе Ур британским археологом сэром Чарльзом Леонардом Вулли примерно в 1920 году, имеет возраст свыше 4 000 лет. В настоящее время эта доска хранится в Британском музее в Лондоне. Предполагается, что эта игра была привилегией лишь королей и знати. Тот факт, что ее находили в гробницах, позволяет предположить, что ее помещали туда, чтобы усопший мог насладиться игрой в загробной жизни. Правила игры урских царей, как и древнеегипетской игры сенет, точно неизвестны.

Однако по дошедшим до нас предметам (помимо доски было найдено 7 белых и 7 черных фишек из перламутра и сланца и 6 игральных костей в форме правильной треугольной пирамиды) можно заключить, что целью игры было провести все фишки по доске быстрее соперника. Интересная форма доски из 20 клеток — два прямоугольника 3 × 2 и 3 × 4 соединены прямоугольником 1 × 2 — позволяет предположить, каким путем нужно было провести фишки по доске.

Доска для игры урских царей. На рисунке обозначены первые ходы каждого игрока.


Для вычислений с дробями используются только так называемые египетские дроби, числитель которых равен единице, а знаменатель — натуральному числу. Этот любопытный способ вычислений, придуманный египтянами, в разное время изучали выдающиеся математики. Среди них Леонардо Пизанский, именуемый Фибоначчи (1175—1250), один из величайших математиков Средневековья. Именно он первым доказал осуществимость этого метода. Англичанин Джеймс Джозеф Сильвестр (1814—1897) открыл новые способы выражения дроби в виде суммы единичных дробей. Венгерский математик Пол Эрдёш (1913—1996), автор наибольшего числа статей среди математиков современности, проявлял особый интерес к теории чисел и сформулировал несколько открытых задач о египетских дробях, предложив собственные решения некоторых из них.

Игры и математика в Средневековье

Изложив лишь некоторые наиболее интересные факты из древней истории взаимоотношений игр и математики, перенесемся в XIII век. Именно тогда жил Леонардо Пизанский, известный как Фибоначчи (1175—1250), автор «Книги абака» (1202), где впервые в истории западного мира была представлена десятичная позиционная система счисления. В этой книге описана известная задача о размножении кроликов, в которой фигурирует интересная последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, ..., получивших название чисел Фибоначчи. Закономерность для чисел Фибоначчи крайне проста (первые два члена ряда равны 1, а каждый последующий равен сумме двух предыдущих), но этот ряд обладает удивительными свойствами. Так, он связан с числом Ф, описывающим золотое сечение. Ф = (1+у√5)/2 является пределом последовательности a


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.