Десять великих идей науки. Как устроен наш мир. - [69]
вещества, состоящие из атомов с одним и тем же атомным номером.
Современная эпоха для элементов началась всерьез, когда Хенниг Бранд (не ранее 1669 г.) из Гамбурга открыл фосфор, первый за много веков новый элемент. Использованная им процедура была не такой, чтобы внушить его соседям или другим возможным искателям новизны любовь к нему. Он собрал пятьдесят ведер человеческой мочи, которую заставил испаряться и разлагаться, выкипячивая ее до тестообразного осадка, дал осадку перебродить и подверг нагреванию черный остаток, смешав его с песком и собирая испарения в реторту. Эта с виду магическая субстанция светилась в воздухе и поэтому была сочтена средством для борьбы со смертью или, на худой конец, для получения выгоды. Как и в процедуре Бранда, самой ранней техникой разложения соединений на составляющие было нагревание, иногда нагревание вместе с другими веществами, как, например, с углем, для извлечения железа из железной руды, а иногда только нагревание, как при оспариваемом открытии кислорода посредством нагревания окиси ртути.
До индустриальной революции получение жара высокого накала было делом трудно достижимым, и одна из прометеевых процедур заключалась в краже огня у Солнца посредством мощных линз. Новое оружие свалилось в руки встряхивателей вещества с появлением гальванического элемента и возможности использовать электрический ток. Так, Хемфри Дэви (1778-1829) подключал электроды почти ко всему, что лежало в окрестностях Королевского общества, и в течение недели в октябре 1807 г. впервые получил калий с помощью электролиза расплавленного поташа (нитрата калия), а затем натрий с помощью электролиза расплавленной соды (углекислого натрия). Джон Дэви, брат Хемфри, рассказывал, что Хемфри «безумствовал и плясал от радости» вокруг своего открытия. Всего Дэви открыл шесть новых элементов (натрий, калий, кальций, магний, стронций и барий). Волна открытий, в основном обязанная своим происхождением использованию электролиза, довела к 1818 г. число элементов до пятидесяти девяти. Шведский химик Йене Берцелиус (1779-1848) сам открыл три элемента (цезий, селен и торий) и отсоединил символические обозначения элементов от чуть-чуть алхимического и неудобного для типографий стиля Дальтона, введя более практичные буквенные обозначения, используемые нами и сегодня, такие как Ce для цезия, Se для селена и Th для тория. Дальтон был чрезвычайно рассержен этим иностранным вторжением на его территорию и получил первый из своих двух ударов во время спора с коллегой о символах.
В картинке-головоломке трудно увидеть рисунок, пока не подобрано достаточно много составляющих ее фрагментов. Первый рисунок, отображающий свойства вещества, начал проявляться в 1820 г., когда собирание фрагментов было завершено почти наполовину. Существовало два аспекта этой головоломки: во-первых, качественные свойства элементов, их подобия и различия, и во-вторых, возникающая количественная характеристика атомов элементов, их атомный вес. Иоганн Доберейнер (1780-1849) из Йены, необразованный, но наблюдательный сын кучера, достигший впоследствии звания профессора университета, заметил нечто весьма необычное, нечто приводящее в гармонию эти две составляющих загадки. Он заметил, что некоторые тройки химически подобных элементов имеют атомные веса, такие, что вес одного из этих элементов близок к среднему арифметическому двух других. Например, хлор, бром и йод химически подобны, а их атомные веса равны соответственно 35, 80 и 127 (среднее от 35 и 127 равно 81). Доберейнер обнаружил три таких тройки и этим призвал к жизни идею о том, что элементы, по каким-то причинам, образуют нечто вроде гобелена.
Охота за организующим принципом началась. У меня нет намерения в деталях описывать историю этой охоты или воздавать должное всем действующим лицам, поскольку я больше заинтересован представить здесь результаты, чем усилия, затраченные на их получение. Но двое из участников заслуживают того, чтобы пригласить их на сцену. Джон Ньюлэндс (1837-98) имел англо-итальянское происхождение, и, подобно Канниццаро был настолько охвачен националистическим энтузиазмом, что в двадцать три года отправился на Сицилию сражаться вместе с краснорубашечниками Гарибальди. Остепенившись, он вернулся в Англию и обнаружил еще одну составляющую рисунка. Он увидел, что Доберейнер заметил только разбросанные триады, в то время как существует более систематический узор, по крайней мере для более легких элементов. А именно, он обнаружил, что если выстроить легкие элементы в порядке возрастания атомного веса, то подобия их свойств повторяются через каждые восемь элементов (газообразные элементы гелий, неон и аргон были в то время неизвестны). Не слишком благоразумно, с ретроспективной точки зрения, он уподобил эту повторяемость нотам музыкального ряда и отнес ее на счет своего «закона октав». Эта фантастическая аналогия дорого ему обошлась: над ним насмехались за столь возмутительное и заведомо произвольное предложение, а кое-кто предлагал ему расположить элементы по алфавиту или использовать какой-нибудь другой замысловатый критерий.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.