Десять великих идей науки. Как устроен наш мир. - [20]
Рис. 1.14. Кроманьонский человек был почти идентичен современному человеку, показанному здесь в несколько идеализированном виде. Это высоко интеллектуальное творение находится в процессе уничтожения других видов, более масштабного, чем любой из его конкурентов, включая природные катастрофы. Однако, как показывают следующие страницы, несмотря на недостаток самоконтроля, это парадоксальное животное способно к утонченному пониманию и, как показывают страницы других книг, к утонченным художественным достижениям.
Современные люди, однако, когда не заняты бойней, имеют теперь все необходимое, чтобы поразмышлять о своей окружающей среде, о своей физической и психологической природе, о строении вещества, которое их окружает и которое они медленно познают, чтобы подчинить своей воле. Что будет дальше, зависит от того, куда приведут эти начинания.
Глава вторая
ДНК
Рационализация биологии
Почти все проявления жизни заложены на молекулярном уровне, и без понимания молекул мы можем иметь лишь весьма поверхностное понимание самой жизни.
Френсис Крик
Каждый из нас состоит почти из сотни триллионов самих себя. Каждая из наших клеток — а их примерно сто триллионов, и большинство их так малы, что понадобится около двух сотен, чтобы покрыть точку над i — содержит полную схему нашего тела. В принципе (всегда угрожающе подозрительный оборот речи) ваше тело, рассыпанное на свои сто триллионов клеток, могло бы породить сто триллионов вас, каждый из этих новых вас, рассыпанный снова, мог бы стать еще одной сотней триллионов, и вы с вашими клонами очень быстро достигли бы абсолютного доминирования во Вселенной. К счастью, имеются физические и биологические ограничения, делающие невозможным воплощение этой фантазии. Но даже рассмотрение такой возможности заставляет предположить, что мы в беспрецедентной степени осведомлены о клеточной природе жизни.
Мы осведомлены. Дарвин и его современники, возможно, за исключением одного монаха, ничего не знали о природе наследственности. Несмотря на то что они проницательно смотрели на мир природы и хорошо осознавали результаты конкуренции, крылья их понимания были подрезаны неосведомленностью о механизмах наследования. Наиболее почитаемым механизмом в то время была смешанная наследственность, при которой каждый из родителей сливает свои наследуемые характеристики в общий котел, которому предстоит стать их ребенком, и ребенок возникает из этой смеси. Тот факт, что подобное смешивание не смогло бы поддерживать естественный отбор, поскольку новые адаптационные свойства быстро размывались бы, использовался как сильный аргумент против точки зрения Дарвина и задерживал полное принятие его теорий. Аристотель, хотя и был замечательным искателем вопросов, давал обычно неверные ответы, снова и снова демонстрируя бесполезность размышлений в кресле, не подкрепленных экспериментом.[5] Замечая, что кровь омывает все органы тела, Аристотель назначил носителем наследственности кровь, и этот взгляд сохранился до сих пор в качестве метафоры. Он считал семя очищенной кровью, которая при копуляции смешивается с менструальной кровью и порождает следующее поколение.
Монахом, владевшим ключом, конечно, был Грегог Мендель (1822-84), названный Иоганном при рождении в семье фермера в Хайнцендорфе, на севере Моравии, провинции в Австрийской Силезии, позднее вошедшей в Чехословакию, ныне Чешскую Республику. Отец Менделя, Антон, был незадачливым малым, чье здоровье и средства к существованию были подорваны ботаникой в виде упавшего на него дерева. Антон продал ферму своему племяннику, так что смог вносить плату за сына, которому предстояло посвятить жизнь ботанике в школе в Троппау и затем в университете в Олмютце. Единственным способом получить дешевое образование для Менделя было поступление в монастырь Св. Томаша в Брюнне (теперь Брно) в возрасте двадцати двух лет, где он принял имя Грегор и был возведен в сан священника в 1847 г. Шагом, подготовившим его ум к малой арифметике наследственности, которую ему суждено было разработать позже, было направление в Вену для изучения наук и математики, чтобы стать учителем. Однако его успехи в учении были незначительны, особенно в биологии, и через два года он возвращается в монастырь, чтобы позднее стать его аббатом (1868).
Мендель был священником прихода в прелатстве имперского и королевского Австрийского ордена императора Франца-Иосифа, заслуживающим похвал директором Моравского ипотечного банка, основателем Австрийской метеорологической ассоциации, членом Моравского и Силезского общества поддержки агрокультуры, естественных наук и краеведения, и, что наиболее важно, садовником. В 1850-х гг., примерно в то же время, когда Дарвин записывал свои мысли, он начал исследования, сделавшие его посмертно знаменитым. Множество вопросов о достоверности его работы или работы его ассистентов поднималось — и энергично отводилось, — когда выдающийся статистик и генетик Рональд Элмер Фишер (1890-1962) объявил, что цифры, приводимые Менделем, вызывают подозрения. Позднее понимались вопросы, знал ли действительно Мендель, что он делает, и не является ли миф, выросший вокруг его достижений, скорее следствием нашей подслеповатости, чем его прозрения. Так, толчком к работам Менделя послужило желание понять скорее правила гибридизации, чем механизм наследственности. Мотивацией же была попытка реализовать преобладающую в то время точку зрения, что новые виды возникают из гибридизации, причем «устойчивые» гибриды и становятся новыми видами. Его безрассудной целью было создание новых видов, и он потерпел в этом оглушительное фиаско.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.