Десять великих идей науки. Как устроен наш мир. - [161]

Шрифт
Интервал

Но возникает вопрос: почему математика, высший продукт человеческого ума, так великолепно приспособлена для описания Природы? И здесь я позволю себе заключительную завитушку, личный полет фантазии, представляющий собой чистую спекуляцию, не основанную на науке и поэтому совершенно лишенную всякой авторитетности. Это покажет, каким я на самом деле являюсь греком (древним, разумеется) и кантианцем в душе, несмотря на мои малодушные насмешки над их спекулятивными философиями. Здесь я намереваюсь быть более греком, чем сами греки, поглядеть, не являюсь ли я более кантианцем, чем сам Кант, и исследовать вопрос: а не существует ли глубокой связи между платоновским реализмом, кантианством и брауэровским интуиционизмом, а также гильбертовским формализмом?

В проблеме, с которой мы столкнулись, есть два главных момента. Один заключается в том, что математика есть внутренний продукт человеческого ума. Второй состоит в том, что математика оказывается удивительно хорошо приспособленной к описанию внешнего физического мира. Как это получается, что внутреннее так хорошо соответствует внешнему? Если мы примем кантианский взгляд на мозг, мы можем предположить, что он развивался таким способом, который наделил его способностью различать множества, соответствующие натуральным числам (в кантовских терминах, синтетическим a priori) и представлять эти числа в трех измерениях в форме геометрии (синтетической a priori тоже, но только локально, поскольку мы знаем, что евклидова геометрия не справедлива на больших масштабах и вблизи массивных тел). Кант наших дней мог бы утверждать, что у нас возникает столько проблем с представлением иррациональных чисел и неевклидовой геометрии потому, что эти концепции не входят в программное обеспечение нашей нейронной сети, из-за некоего рода эволюционной адаптации к локальному окружению, и нам нужно прилагать реальные умственные усилия, чтобы созерцать их свойства.

Двигаясь дальше, мы можем также предположить, что простые операции с этими понятиями также структурно представлены в программном обеспечении нашего мозга. Эта идея предполагает, что лежащие в основе других операций логические операции являются встроенными и у нас есть программно обеспеченная способность к построению алгоритмов. Я не утверждаю, что эта способность принадлежит исключительно мозгу: сегодня существует большой интерес к умозрительным предположениям о существовании нелокальной активности мозга, которая дает нам возможность рассматривать связи неалгоритмическими способами, и кое у кого имеются умозрения (Роджер Пенроуз является ведущим пропагандистом этого взгляда), что сознание есть внутренне нелокальный квантовый феномен. Хотя я был бы удивлен, если бы это оказалось правдой, это не станет составной частью моего собственного умозрения, когда я сконцентрируюсь на алгоритмических процессах в мозгу, на гильбертовском алгоритмическом сопроцессоре для большей, более метаматематической, возможно, нелокальной способности мозга. Коротко говоря, для алгоритмических вычислений мы можем занять позицию, которую допустимо назвать «структуралистской», подобной той, с которой Ноам Хомский смотрел на внутреннюю способность человека к языку, и представлять себе нашу логическую способность как кантовское проявление программно обеспеченной алгоритмической компоненты мозга, которая возникла под давлением эволюции. Наша способность создавать математические взаимосвязи, выводить теоремы и так далее является следствием этой структуры.

Двигаясь из головы наружу, нам следует теперь рассудить, почему физический мир представляется рукой в математической перчатке. Здесь я вступаю на еще более предательскую спекулятивную почву. Мы видели связь чисел с множествами и принадлежащее Фреге отождествление чисел с расширениями определенных множеств. В подобном же духе веселый венгро-американский математик Джон (Иоганн) фон Нейман (1903-57), которого считают, наряду с Тьюрингом, отцом современного компьютера, предложил возможность отождествления натуральных чисел с некоторыми очень простыми множествами. А именно, он идентифицировал 0 с пустым множеством {}, множеством, не содержащим элементов. Затем он перешел к отождествлению 1 с множеством, содержащим пустое множество, 1 = {{}}, 2 с множеством, содержащим пустое множество и множество, которое содержит пустое множество, 2 = {{}, {{}}}, затем 3 = {{}, {{}}, {{}, {{}}}}, и так далее.[53] Так фон Нейман закрутил весь мир чисел из абсолютного ничто и дал нам арифметику ex nihilo.

Я утверждал где-то в другом месте, что, поскольку у меня не хватает воображения, чтобы представить себе, каким еще способом явное нечто может произойти из абсолютного ничто, появление Вселенной ex nihilo должно было происходить именно так, как фон Нейман наколдовал нам натуральные числа из пустого множества. Тот факт, что Вселенная пережила свое собственное творение, следует тогда интерпретировать как указание на то, что объекты, начавшие существовать таким путем, являются логически самосогласованными, в противном случае космос коллапсировал бы. Поэтому существует внутренняя логическая структура Вселенной, которая является той же структурой, что и арифметика.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.