Десять великих идей науки. Как устроен наш мир. - [154]

Шрифт
Интервал


Если математика не является в чистом виде ответвлением логики, что заставляют предполагать все эти неудачи, то какие еще дополнительные составляющие заложены в ней? Чтобы раскопать одну вероятную составляющую, мы должны обратиться к сыну шорника и наиболее трудно понимаемому, но и наиболее влиятельному из философов восемнадцатого века, возможно, на четверть шотландцу, Иммануилу Канту (1724-1804). В своем обсуждении метафизического познания, представляющего собой философское познание, выходящее за пределы опыта, в своей книге Kritik der reinen Vernunft (Критика чистого разума, 1781), Кант вводит различие между «синтетическими» и «аналитическими» суждениями. Аналитическое суждение, в котором предикат (свойство) предмета может быть выявлен путем только рассуждения, не приносит нового знания, как, например, высказывание «морковь является овощем». Согласно логическим позитивистам начала двадцатого века, принявшим и уточнившим этот термин, истинность аналитического суждения зависит только от значений составляющих его слов и правил грамматики, управляющих их сочетанием. Однако синтетическое суждение является таким, в котором предикат не содержится в предмете, например, «эта роза — красная», поскольку не все розы красные; такие утверждения несут новое знание. Далее, эти категории подразделяются на суждения a priori, для которых оценка их истинности не зависит от свидетельства опыта, и суждения a posteriori, для которых оценка истинности определяется в опыте.

Кант предположил, что синтетические суждения a priori, которые выражают новое знание, но являются не связанными с опытом, представляют собой подходящие объекты для философского исследования. Такие суждения включают в себя утверждения о пространстве и времени, которые, с его точки зрения, неоспоримы, и восприятие которых каким-то образом встроено в наши мозги. Для Канта принципы геометрии Евклида и свойства натуральных чисел были синтетическими суждениями a priori. С точки зрения Канта, теоремы математики представляют собой «евклидизацию» свойств пространства и времени, которая некоторым образом выявляет работу нашей нервной системы (это, разумеется, не тот термин, который он использовал) и наши способы восприятия.

Идею о том, что в натуральных числах присутствует нечто врожденное, являющееся непосредственно очевидным синтетическим априорным свойством мира, датский математик Луитцен Эгбертус Ян Брауэр (1881-1966), один из создателей топологии, в своей докторской диссертации, защищенной в 1907 г. в Амстердамском университете, развил в философию математики, известную как интуиционизм. Брауэр отмел кантовский взгляд на геометрию как на синтетическую априорную конструкцию, который, на самом деле, уже был превращен в пыль тем, что пятый постулат Евклида, хотя он и согласуется с другими постулатами, можно заменить другими, не создавая противоречия (как мы видели в главе 9). То есть Брауэр признал, что Кант был неправ, предполагая, что евклидова геометрия необходимо верна, поскольку существуют альтернативные геометрии, которые, как показывает опыт, лучше описывают пространство и время. Однако он не отверг в целом точку зрения Канта на математику как на средство изучения пространства и времени, он отверг только ее пространственную составляющую. Брауэр считал, что математика является выражением нашего осознавания времени, и пропагандировал тот взгляд, что натуральные числа происходят из последовательного просмотра набора объектов и временного разделения наших восприятий каждого из них, которое и представляет собой способ их различения. Брауэр, на самом деле, шел дальше: он был соллипсистом и считал, что все существующее, включая наши сознания, происходит из одного сознающего ума. Однако это точка зрения не является необходимой составляющей интуиционистской повестки дня, и на первый взгляд кажется, что нет необходимости говорить о ней далее (но позднее я еще коснусь с одобрением одного ее варианта).

Интуиционист принимает точку зрения, что натуральные числа имеют особый статус и что мы имеем прямую их интуицию: они не являются объектами, которые можно разработать лучше с помощью дальнейших описаний. Для того чтобы, следуя Брауэру, прийти к понятию натурального числа, мы должны замечать, как наше восприятие проводит различия между объектами, возникающие из упорядоченного во времени их просматривания, с отгибанием пальца всякий раз, как в поле нашего зрения попадает еще один. Из такого взгляда следует, что натуральные числа являются выражением нашей умственной активности. Подобным же образом арифметические операции, такие как сложение, следует считать изображениями умственных процессов, происходящих у нас в голове. Таким образом, чтобы подтвердить, что 2 + 3 = 1 + 4, мы должны выполнить множество операций; мы должны найти результат прибавления 2 к 3, так же как и 1 к 4, а затем должны удостовериться, что эти результаты равны друг другу.

У интуиционизма есть определенные неприятные следствия, которые не становятся немедленно очевидными при кратком описании, но которые необходимо отметить, поскольку они наносят удар в самое сердце классической логики. Это, в частности, случай, когда имеют дело с утверждениями о бесконечных наборах объектов, с которыми нельзя ассоциировать никакую умственную активность, связанную с их восприятием, поскольку у нас нет прямого опыта бесконечности. Например, Аристотель считал одним из столпов логики свой


Рекомендуем почитать
Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.