Чужой разум. Осьминоги, море и глубинные истоки сознания - [7]

Шрифт
Интервал

в свободном плавании, вместо того чтобы закрепиться. Они сохраняли подвижность, достигали полового созревания, продолжая плавать в водной толще, и породили новый тип организмов. Они стали матерями всех остальных животных, в то время как их родственницы остались прикрепленными к морскому дну.

Сценарий, который я только что изложил, основан на мнении, что губки — наши самые отдаленные родичи среди современных животных. Отдаленные не значит древние — современные губки прошли столь же длительную эволюцию, как и мы. Но по ряду причин считается, что если губки ответвились от эволюционного древа очень рано, то они могут дать сведения о том, какими были древнейшие животные. Впрочем, новейшие исследования предполагают, что губки могут и не быть самыми дальними нашими родственниками — на самом деле эта честь может принадлежать гребневикам.

Гребневик (Ctenophora) похож на очень хрупкую медузу. Это почти прозрачный шарик с цветными лентами из тонких, как волос, ресничек вдоль всего тела. Гребневиков часто считали родственниками медуз, но внешнее сходство бывает обманчиво: они, возможно, отделились от линии, ведущей к остальным животным, еще раньше, чем губки. Если это правда, это не значит, что наш предок выглядел как современный гребневик. Но «гребневиковый» сценарий дает другую картину ранних стадий эволюции. В начале ее тоже комок из клеток, но затем можно представить себе, как комок складывается в пленчатый шарик и выполняет простые движения, плавая в толще воды. Тогда эволюция животных начинается отсюда — от парящего призрачного прародителя, а не от извивающейся личинки губки, которая отказалась от сидячего образа жизни.

С появлением многоклеточных организмов клетки, которые были раньше самостоятельными организмами, начинают функционировать как составные части более крупных элементов. Для того чтобы новый организм стал чем-то посложнее, чем комок склеенных вместе клеток, нужна координация. Выше я описал чувства и действия, наблюдаемые у одноклеточных. У многоклеточных системы, отвечающие за восприятие и поведение, усложняются. Более того, само существование этих новых объектов — животных организмов — зависит от данных способностей воспринимать и действовать. Восприимчивость и коммуникация между организмами дают начало восприимчивости и коммуникации в организме. «Поведенческие» возможности клеток, когда-то живших в качестве отдельных организмов, закладывают основу для слаженной работы нового, многоклеточного организма[23].

У животных эта скоординированность имеет несколько аспектов. Один из них присущ также и другим многоклеточным, например растениям, — взаимодействие между клетками, составляющее организм, то, благодаря чему он существует. Другой действует в более быстром темпе и составляет характерную особенность животных. У большинства животных, за немногими исключениями, химические взаимодействия между некоторыми клетками составляют основу нервной системы, простой или сложной. А у некоторых из них масса подобных клеток, объединившихся вместе, вспыхивает электрохимической грозой сигналов, изменивших свои функции, — и становится мозгом.

Нейроны и нервная система

Нервная система состоит из множества элементов, но важнейшие из них — это клетки необычной формы, которые называются нейронами. Их длинные отростки и сложные разветвления образуют лабиринт в наших головах и других частях тела.

Активность нейронов зависит от двух факторов. Первый — их электрическая возбудимость, проявляющаяся в первую очередь как нервный импульс, электрический спазм, проходящий через клетку в ходе цепной реакции. Второй — химическая чувствительность и обмен сигналами. Нейрон выпускает микроскопические брызги того или иного вещества в синаптическую щель между собой и соседним нейроном. Эти вещества распознаются другим нейроном и помогают запустить (или подавить) в нем нервный импульс, который называют также потенциалом действия. Подобное химическое взаимодействие — наследие древней системы коммуникации между организмами, «загнанное» внутрь. Потенциал действия имелся и у древних клеток до появления животных, и в наши дни существует не только у животных. Вообще-то впервые он был измерен у растения — венериной мухоловки, с которой работал Чарльз Дарвин в XIX веке. Даже у некоторых одноклеточных есть потенциал действия.

Нервная система позволяет не просто обмениваться сигналами между клетками — это и так обычное явление, — она обеспечивает особые виды коммуникации[24]. Во-первых, нервная система работает быстро. Темп жизни растений, за исключением редких случаев вроде венериной мухоловки, гораздо медленнее. Во-вторых, длинные тонкие отростки нейрона позволяют одной клетке протягиваться через мозг или тело на определенное расстояние и воздействовать лишь на некоторые клетки вдалеке от себя — воздействие целенаправленно. Эволюция преобразила межклеточную коммуникацию из простой рассылки клетками сигналов сородичам, случайно оказавшимся поблизости, в нечто иное — упорядоченную сеть[25]. В нервной системе наподобие нашей это порождает постоянный электрический шум, симфонию микроскопических конвульсий клеток, обменивающихся брызгами химических веществ через щели там, где одна клетка взаимодействует с другой.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дарвиновская революция

Эта книга – синтез эволюционных идей. И тех, которыми могут гордиться ученые XIX века, в том числе Чарлз Дарвин, и тех, что были изложены в современности исследователями общества и культуры. Автор дает подробный и беспримерный по детализации обзор естественнонаучных и религиозных представлений, которые господствовали в просвещенном мире до того, как теория Дарвина заняла свое место в научной картине. Он также описывает драматичные сдвиги, имевшие место в период становления нового мировоззрения, и всесторонне анализирует его влияние на то, как мы рассуждаем сегодня. В формате a4.pdf сохранен издательский макет.


Фантомы мозга

В. С. Рамачандран — всемирно известный невролог, психолог, доктор медицины, доктор философии, директор Исследовательского центра высшей нервной деятельности, профессор психологии и нейрофизиологии Калифорнийского университета в Сан-Диего. В своей книге «Фантомы мозга» автор рассказывает, как работа с пациентами, страдающими неврологическими нарушениями причудливого характера, позволила ему увидеть в новом свете архитектуру нашего мозга и ответить на многие вопросы: кто мы такие, как конструируем образ своего тела, почему смеемся и огорчаемся, как мы обманываем сами себя и мечтаем, что толкает нас философствовать, учиться, творить…