Чужой разум. Осьминоги, море и глубинные истоки сознания - [5]

Шрифт
Интервал

.

Воображая себе этот мир, мы можем подумать, что раз в нем нет животных, то нет и поведения, и восприятия внешнего мира. И снова это не так. Одноклеточные умеют чувствовать и реагировать на стимулы[11]. Как правило, то, что они делают, можно назвать поведением лишь в самом общем смысле, но все же они способны контролировать свои движения и «решать», какие вещества вырабатывать, сориентировавшись в обстановке вокруг себя. Любому организму для решения этой задачи нужно, чтобы у него имелась восприимчивая часть, способная видеть, чуять или слышать, и деятельная, способная предпринять нечто полезное. Между этими частями в организме также должна быть какая-то связь, мостик.

Одной из наиболее хорошо изученных систем подобного рода обладает хорошо знакомая нам кишечная палочка, E. coli[12], бактерия, весьма распространенная как вокруг нас, так и внутри нас. Кишечная палочка различает нечто вроде вкуса или запаха; она может определять, полезные или вредные вещества находятся рядом, и реагировать, приближаясь к скоплениям одних веществ и удаляясь от других. На поверхности кишечной палочки имеется набор сенсоров — групп молекул, прикрепленных к наружной мембране клетки. Это «входной» элемент системы. «Выходной» состоит из жгутиков — длинных нитей, с помощью которых клетка плавает. У отдельно взятой кишечной палочки два основных способа передвижения: она умеет мчаться и перекатываться. Когда она мчится, то движется по прямой, а когда перекатывается, то, естественно, меняет направление случайным образом. Клетка постоянно чередует виды движения, но если она почует, что концентрация пищи выросла, то перекатывается реже.

Бактерии настолько малы, что сенсоры сами по себе не могут подсказать им, в каком направлении от них находится полезное или вредное вещество. Чтобы решить эту проблему, бактерия одолевает пространство с помощью времени. Клетку не интересует, сколько вещества рядом с ней в каждый конкретный момент, — ее интересует, повышается его концентрация или понижается. Ведь если клетка будет плыть по прямой просто в ответ на высокую концентрацию нужного ей вещества, она может и уплыть от своего химического рая, вместо того чтобы попасть в него, — все зависит от направления движения. Бактерия решает эту проблему остроумным способом: когда она определяет условия среды, один механизм фиксирует, каковы они в данный момент, а другой «вспоминает», какими они были недавно. Бактерия поплывет по прямой, если почувствует, что химический состав окружающей среды более благоприятен, чем тот, который был мгновение назад. Если этого не происходит, выгоднее сменить направление.

Бактерии — лишь один из нескольких вариантов одноклеточной жизни, и они во многих отношениях проще, чем те клетки, из которых впоследствии получились животные. Это были уже эукариотические клетки, они крупнее, и у них сложное внутреннее строение[13]. Возникли они около 1,5 миллиарда лет назад в результате процесса, который начался с того, что одна маленькая, похожая на бактерию клетка поглотила другую. У одноклеточных эукариот часто более развиты способности ощущать вкус и передвигаться, а кроме того, они вплотную подошли к новому рубежу, на котором появляется особенно важное чувство — зрение.

Для живых существ свет играет двоякую роль[14]. Для многих это жизненно важный ресурс — источник энергии. Но он может быть и источником информации, сообщающим об окружающем мире. Второй способ использования привычен нам, но его не так просто освоить микроорганизму. В основном одноклеточные используют свет для получения энергии: как и растения, они принимают солнечные ванны. Различные бактерии могут воспринимать свет и реагировать на его присутствие. Таким маленьким организмам трудно определить направление, откуда он идет, не говоря уже о том, чтобы получить изображение, но ряд одноклеточных эукариот, а возможно, и некоторые особые бактерии, имеют зачатки зрения. У эукариот есть «глазки», светочувствительные пятна, связанные с чем-то, что затеняет или фокусирует воспринимаемый свет, делая его более информативным. Одни эукариоты ищут свет, другие избегают его, третьи делают то и другое попеременно: стремятся на свет, когда им нужно пополнить запасы энергии, и избегают его, когда энергии достаточно. Некоторые стремятся на свет, когда он не слишком яркий, и избегают его, когда интенсивность излучения становится опасной. Во всех этих случаях есть система управления, связывающая глазок с механизмом, благодаря которому клетка передвигается.

У этих крохотных организмов чувства служат в основном для того, чтобы разыскивать пищу и избегать ядов. Однако уже самые первые исследования E. coli создавали впечатление, что этим дело не ограничивается. Бактерий привлекали также вещества, несъедобные для них[15]. Биологи, работающие с этими организмами, все больше склоняются к мысли, что чувства бактерий настроены на присутствие и деятельность других клеток вокруг них, а не просто на приток съедобных или несъедобных веществ. Рецепторы на поверхности бактериальных клеток чувствительны к множеству факторов, в том числе к веществам, которые выделяют сами бактерии по разнообразным причинам — иногда просто в ходе обычной жизнедеятельности. На первый взгляд, не бог весть что, но это приоткрывает важную дверку. Если одни и те же вещества производятся и воспринимаются, то появляется возможность координации между клетками. Мы добрались до истоков социального поведения.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дарвиновская революция

Эта книга – синтез эволюционных идей. И тех, которыми могут гордиться ученые XIX века, в том числе Чарлз Дарвин, и тех, что были изложены в современности исследователями общества и культуры. Автор дает подробный и беспримерный по детализации обзор естественнонаучных и религиозных представлений, которые господствовали в просвещенном мире до того, как теория Дарвина заняла свое место в научной картине. Он также описывает драматичные сдвиги, имевшие место в период становления нового мировоззрения, и всесторонне анализирует его влияние на то, как мы рассуждаем сегодня. В формате a4.pdf сохранен издательский макет.


Фантомы мозга

В. С. Рамачандран — всемирно известный невролог, психолог, доктор медицины, доктор философии, директор Исследовательского центра высшей нервной деятельности, профессор психологии и нейрофизиологии Калифорнийского университета в Сан-Диего. В своей книге «Фантомы мозга» автор рассказывает, как работа с пациентами, страдающими неврологическими нарушениями причудливого характера, позволила ему увидеть в новом свете архитектуру нашего мозга и ответить на многие вопросы: кто мы такие, как конструируем образ своего тела, почему смеемся и огорчаемся, как мы обманываем сами себя и мечтаем, что толкает нас философствовать, учиться, творить…