Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - [7]

Шрифт
Интервал

– Куда тебе, – сказал Вася. – Ты же еще в школу не ходишь и даже не знаешь, что такое алгебра.

– Зато я умею читать и считать и даже немножко дроби знаю, – сказал брат, взял Васин учебник и прочитал задачу:

«Джеймс Бонд, агент 007, успешно выполнив очередное задание, перебирался на другой берег широкой реки, берега которой были соединены очень длинным и узким железнодорожным мостом с одной колеей. Сетка, ограждающая с двух сторон мост, была так близко от рельсов, что, если бы поезд застал Бонда на мосту, его гибель была бы неминуемой. Однако у Бонда не было выхода, и он быстро пошел по шпалам на другой берег. Пройдя 4/10 всего моста, он услышал далеко позади свисток локомотива. Обернувшись, Бонд увидел вдали от моста приближающийся поезд. Опытный разведчик тут же определил, что скорость поезда 50 миль в час. Не более мгновения у него ушло и на то, чтобы понять, что если он побежит назад, то добежит до конца моста в ту же секунду, когда к мосту подъедет поезд, так что он успеет спрыгнуть с рельсов; если же он побежит вперед, то тоже спасется, так как добежит до дальнего конца моста за мгновение до того, как его догонит поезд. С какой скоростью бежал Джеймс Бонд по шпалам?»

Подумав немного и ничего не записывая, Петя сказал:

– Я не знаю, что такое миля, но Бонд бежал со скоростью…

Вася заглянул в ответ: все точно!

1. Как решил задачу Петя?

2. Переведите полученный Петей ответ в метрическую систему.

3. Слово «миля» произошло от латинского mille (тот же корень в словах «миллиметр», «миллиграмм», «миллилитр», «миллион» и др.). Как вы думаете, почему она так названа?

Подсказка: эта единица возникла в Древнем Риме и называлась mille passuum; тот же корень, что во втором слове, можно найти в слове «па» (движение в танце) – от французского pas.

«Что-то физики в почете. Что-то лирики в загоне…»

1. Много лет назад в моде был спор между так называемыми физиками и лириками. Чтобы завершить его, физики вывели уравнение:

ЛИРИК = 1/2 ФИЗИКА,

в котором кроме основного смысла был и математический: каждая буква изображала какую-либо цифру, при этом равенство было верным.

Расшифруйте этот числовой ребус.

2. Если вы считаете, что физики решили спор некорректно по отношению к лирикам, никто не мешает вам переделать эту же задачу и решить уже ее:

ФИЗИК = 1/2 ЛИРИКА.

Коллекция номерных знаков

В 1990-х годах в России начали вводить новые автомобильные международные номера. В прежних номерах (например, О 2144 МТ на старой машине автора задачи) использовались почти все буквы русского алфавита (кроме таких экзотических букв, как Й, Ь, Ъ). В новых номерах должны были быть только такие буквы, начертание которых совпадает в русском и латинском алфавитах. Вот образец такого номера: У 025 ХО 77 RUS. (Число 77 – код региона, в данном случае это код Москвы.) Вскоре ввели новый индекс – 99, затем 97, потом появились уже трехзначные индексы (177, 199, 197, 777, 799).

Как вы думаете, почему так часто приходилось менять московский индекс?

Ваш ответ подтвердите вычислениями.

Две башни

Останкинская телебашня в Москве – одно из самых высоких сооружений в мире; ее высота – 530 м, а масса – 30 000 т. Какова будет масса точной модели этой башни, выполненной с сохранением всех пропорций, высотой 53 см? Считайте, что плотность материалов, из которых изготовлена башня и модель, примерно одинакова.

«А у вас и волосы на голове все сочтены»

Как вы думаете, найдется ли в Москве два нелысых человека, у которых число волос на голове полностью совпадает? Ответ необходимо аргументировать.

Исчисление снежинок

Однажды в Москве в течение трех часов шел сильный снег. Оцените, сколько снежинок выпало за это время на город (в пределах МКАД) и сколько снега (по массе) выпало на 1 м>2. Предположите, что каждую секунду на 1 дм>2 падает десять снежинок. (Дополнительные сведения: 30 капель из пипетки имеют объем около 1 мл, а одна снежинка, растаяв, дает капельку, в 30 раз меньшую, чем капля из пипетки.)

Дополнительный вопрос: как можно проверить сделанные в задаче допущения?

«Гордый холм»
Читал я где-то,
Что царь однажды воинам своим
Велел снести земли по горсти в кучу,
И гордый холм возвысился – и царь
Мог с вышины с весельем озирать
И дол, покрытый былыми шатрами,
И море, где бежали корабли.

1. Откуда взят отрывок? Кому принадлежит приведенный монолог?

2. Считая, что у легендарного царя был миллион воинов (огромное войско, вряд ли возможное в древности), оцените приблизительно, какой высоты холм могли бы насыпать эти воины, приносящие землю двумя руками (предположим, что получился конус, радиус основания которого равен высоте, царь стоял на самой верхушке, а земля в холме не утрамбовывалась).

3. Используя полученную вами высоту холма, определите, как далеко он мог быть от моря, чтобы царь одновременно «озирал и дол, и море».

Cтройнеет не по дням, а по минутам

Одна из самых известных толстушек, американская артистка цирка Селеста Гейер, решила похудеть и за 14 месяцев сбросила свой вес с 553 до 152 фунтов (этот результат был внесен в Книгу рекордов Гиннесса). Чему равен американский фунт, если средняя скорость похудения артистки составила 17,8 г в час?


Еще от автора Илья Абрамович Леенсон
Удивительная химия

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения о химической науке, величайших открытиях ученых-химиков, загадочных фактах и уникальных химических экспериментах.Для школьников, студентов и учителей, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов химию.


Чудесного холода полный сундук

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная химия для детей и взрослых

Автор этой книги, доцент химического факультета МГУ, написал ее для всех любознательных людей. "Наука начинается с удивления", – сказал Аристотель. Прочитав сей труд, вы не раз удивитесь. А заодно узнаете, как работают в автомобиле подушки безопасности, из каких металлов делают монеты разных стран, какие бывают в химии рекорды, почему лекарство может оказаться ядом, как химики разоблачают подделки старинных картин, как журнальная шутка лишила победы "знатоков" в известной телевизионной игре "Что? Где? Когда?", а также многое другое.


Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.