Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - [9]

Шрифт
Интервал

Еще более впечатляющим по размерам был маятник, установленный в марте 1931 года в Ленинграде в здании Исаакиевского собора. (Его демонтировали в 1986 году.) Масса маятника составляла 60 кг, длина подвеса – 98 м, период колебаний – 20 секунд, а размах качаний – около 10 м. Когда вблизи крайней точки размаха маятника ставили сбоку спичечный коробок, маятник уже после нескольких качаний сбивал его.

1. Выберите правильное объяснение поворота плоскости колебаний маятника Фуко:

а) вращение Земли вокруг своей оси;

б) магнитная аномалия в данной местности;

в) влияние притяжения Луны;

г) сквозняки в зале;

д) вращение Земли вокруг Солнца;

е) Фуко спрятал под куполом механизм, вращающий ось маятника, а в Ленинграде повторили его хитрость.

2. Почему плоскость колебания маятника в Ленинграде поворачивалась быстрее, чем в Париже?

3. Почему маятник должен быть тяжелым и висеть на длинной нити?

4. Оцените период одного колебания маятника, который изготовил Фуко.

5. Через какое время будет сбит коробок, поставленный в 10 см от острия в крайней его точке, если размах колебаний маятника 12 м и подвешен он на полюсе?

Маятник Менделеева

Необычный маятник, аналогичный маятнику Фуко, был изготовлен по заказу Менделеева. Он представлял собой двухпудовый полированный золотой шар (сейчас он хранится в музее Московского Кремля). Менделеев установил маятник в Главной палате мер и весов Российской империи, которая находилась на Московском проспекте в Петербурге; он служил там управляющим. Поскольку в здании не было высоких залов, Менделеев, чтобы удлинить нить подвеса, приказал пробить перекрытия на нескольких этажах, да еще выкопать яму в подвале. Для чего ему мог понадобиться такой маятник?

Расчеты не понадобились

Однажды лауреат Нобелевской премии по физике Ричард Фейнман, состоявший в экспертной комиссии по школьным учебникам, обнаружил в одном из них «фальсификацию» экспериментальных данных. Там описывались результаты, полученные в опытах со стальным шариком, который скатывается по наклонной плоскости. При этом были приведены расстояния, которые проходит шарик за одну, две, три и четыре секунды, и на основании этих данных и законов движения Ньютона рассчитывалась величина ускорения свободного падения g = 9,8 м/с>2.

Как мистер Фейнман распознал ошибку, не делая никаких расчетов?

Шарики за ролики

Васе как-то подарили красивый алюминиевый шарик, и он стал думать – голову сломал: как с помощью подручных средств определить, сплошной он или в нем есть воздушная полость? И как понять, где расположена эта полость – точно по центру шарика или асимметрично? (Объем шарика – 500 см>3, масса – 450 г.)

«Пуд пудом и будет»

В автобиографической повести А. И. Пантелеева есть такой эпизод. Герою на экзамене для поступающих в реальное училище задают вопрос: «Скажите: что будет тяжелее – пуд сена или пуд железа?» И далее автор пишет: «На Ленькино счастье, он слыхал когда-то эту шуточную задачу. Но как она решается, он забыл.Железо, конечно, тяжелее, – подумал он. – Но тут какой-то подвох, тут что-то наоборот…И, собираясь перехитрить экзаменатора, он уже хотел сказать:Конечно, пуд сена тяжелее”. Но вовремя спохватился и ответил:Пуд пудом и будет»[7].

Ленька экзамен выдержал. А все-таки, если отвесить пуд железа (это шар радиусом около 8 см; кстати, есть такие 16-килограммовые гимнастические гири) и пуд сена (большая копна, особенно если сено сухое), то масса какого вещества будет больше?

Время разбрасывать камни и бревна

В бассейне плавает лодка, в которой лежат камень и бревно. Как изменится уровень воды в бассейне, если эти предметы выбросить на берег? А на дно бассейна? (Эта задача знаменита тем, что даже известные физики, не подумав, давали неправильные ответы!)

Рождение сосульки

Откуда берутся сосульки на крышах домов и ветвях деревьев? Очевидно, из растаявшего снега. Но как же такое может быть, если при температуре ниже нуля снег не тает, а при температуре выше нуля растаявший снег не замерзнет?

Термометр в Михайловском

Во время летней экскурсии лицеистов в Михайловское термометр XIX века в доме Пушкиных, вполне исправный, показывал 15°. Почему, если там было совсем не холодно? А ртутный барометр показывал 30 единиц. Что это за единицы? Какое было давление в тот день?

Сравни показания

Вася посмотрел на комнатный термометр. Он показывал +20 ℃.

– Ну вот, – сказал он. – Сейчас у нас дома ровно вдвое теплее, чем на улице, где всего плюс десять.

– Ну нет, ты неправильно считаешь! – сказал Петя.

А вы как думаете, кто из них прав? Можно ли вообще говорить, во сколько раз одна температура больше другой? В каких случаях?

Красные, желтые, синие звезды

Лауреат Нобелевской премии по физике Ричард Фейнман, рецензируя школьный учебник по арифметике для младших классов, был крайне возмущен такой задачей:

«Красные звезды имеют температуру 4000 K, желтые – 5000 K, синие – 10 000 K. Джон с отцом смотрят на звезды. Джон видит две синие и одну красную звезду, а отец – две желтые. Какова суммарная температура звезд, которые видят Джон и его отец?»

Почему возмутился Фейнман?

(Отец и сын вполне могли смотреть в телескоп, дела это не меняет.)


Еще от автора Илья Абрамович Леенсон
Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Занимательная химия для детей и взрослых

Автор этой книги, доцент химического факультета МГУ, написал ее для всех любознательных людей. "Наука начинается с удивления", – сказал Аристотель. Прочитав сей труд, вы не раз удивитесь. А заодно узнаете, как работают в автомобиле подушки безопасности, из каких металлов делают монеты разных стран, какие бывают в химии рекорды, почему лекарство может оказаться ядом, как химики разоблачают подделки старинных картин, как журнальная шутка лишила победы "знатоков" в известной телевизионной игре "Что? Где? Когда?", а также многое другое.


Удивительная химия

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения о химической науке, величайших открытиях ученых-химиков, загадочных фактах и уникальных химических экспериментах.Для школьников, студентов и учителей, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов химию.


Чудесного холода полный сундук

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.