Большое, малое и человеческий разум - [32]

Шрифт
Интервал

Выше я уже говорил, что лично являюсь убежденным сторонником подхода С, однако должен сразу пояснить, что он имеет много вариантов, из которых следует прежде всего выделить так называемые слабое и сильное С-утверждение. Слабое С-утверждение подразумевает, что рано или поздно проблема будет изучена достаточно подробно, в результате чего в задаче удастся выявить те типы действий, которые сейчас находятся вне, «по ту сторону» вычислений. Говоря об областях «вне моделирования», мне следует несколько уточнить свою мысль, что я попытаюсь сейчас сделать. Согласно слабому С-утверждению все «невычислимые» операции могут быть найдены в пределах известных физических законов. Сильное С-утверждение гласит, что препятствием является существование непознанных физических законов, т. е. наше понимание физики пока просто-напросто не соответствует сложности, требуемой для описания процессов сознания. Я полностью согласен с такой оценкой и в гл. 2 уже уделил много внимания именно неполноте существующей физической картины мира (в этой связи я рекомендую читателю еще раз взглянуть на рис. 2.17). Короче говоря, сильное С-утверждение связывает невозможность объяснения природы сознания с недостаточным уровнем науки и позволяет нам надеяться, что эту проблему удастся решить в будущем.

Поскольку я упомянул рис. 2.17, позвольте вернуться к нему и дать некоторые дополнительные пояснения. В частности, я бы хотел обсудить используемый на рисунке термин вычислимость. На квантовом уровне рассмотрения все физические процессы выглядят полностью вычислимыми. Похоже, что вычислимость сохраняется и на классическом уровне, хотя здесь у нас, конечно, могут возникнуть технические проблемы, связанные с переходом от дискретных систем к непрерывным. Эти проблемы кажутся мне непринципиальными, и я не буду их рассматривать, хотя сторонникам слабого С-утверждения следовало бы внимательно изучить возникающие при таком переходе неопределенности, поскольку в них может обнаружиться то, что невозможно описать и объяснить в рамках вычислительных подходов и понятий.

Для перехода от квантового уровня к классическому обычно используется процедура, обозначенная мною R, которая является полностью вероятностным действием, вследствие чего мы должны каким-то образом объединить вычислимость со случайностью и произвольностью. Я собираюсь дальше продемонстрировать, что весь этот подход недостаточно обоснован, и для объединения указанных уровней рассмотрения нам нужна совершенно другая, новая теория, которая должна быть «невычислительной». Именно поэтому позднее я еще вернусь к проблеме определения вычислимости.

Таким образом, моя версия сильного С-утверждения выглядит следующим образом: мы должны искать в физике «невычислимость», позволяющую связать квантовый и классический уровни описания. Конечно, такая постановка вопроса представляется чрезвычайно сложной и трудной, ведь я говорю о необходимости построения не просто новой физики, а физики, относящейся к описанию работы мозга.

Прежде всего давайте подумаем о том, насколько вообще правдоподобно или вероятно существование чего-то невычислимого в нашем понимании. Позвольте мне привести в качестве примера очень простую и симпатичную шахматную задачу. Вы знаете, что компьютеры уже неплохо играют в шахматы. Однако самый мощный современный шахматный компьютер «ДипСот», решая приведенную на рис. 3.5 задачу, начинает делать очень глупые ходы. Легко видеть, что в этой позиции черные имеют огромное материальное преимущество (две лишние ладьи и слона), которое, однако, не имеет никакого значения для исхода партии, поскольку белые пешки «намертво» блокируют черные фигуры. Пока белый король спокойно «бродит» за барьером из своих пешек, белые просто не могут проиграть. Однако компьютер «ДипСот» первым же ходом за белых взял черную ладью, после чего положение белых стало безнадежным. Причина, конечно, состоит в том, что компьютер запрограммирован на действие (ход за ходом) до некоторой глубины расчета, после чего он вновь начинает считать пешки и т. п. В принципе приведенный пример не очень удачен, так как если бы компьютер мог считать на очень много ходов вперед, он не ошибся бы (в конце концов, шахматы относятся именно к «вычислимым» играм). Однако заметьте, что человек-шахматист практически сразу видит барьер из пешек, понимает его непроницаемость и значение, после чего легко находит стратегию игры. Компьютер не обладает таким общим «пониманием» и начинает просто рассчитывать ход за ходом. Этот пример демонстрирует огромную разницу между простым вычислением и способностью к пониманию.


Рис. 3.5. Белые начинают и добиваются ничьей.

Человек легко решает эту задачу, но компьютер «ДипСот» первым же ходом бьет ладью черных! (задача Вильяма Харстона из статьи Джейн Сермор и Дэвида Норвуда в журнале New Scientist, № 1889, с. 23, 1993).

Разумеется, вы можете обучить ЭВМ использованию пешечного барьера, но проблема имеет более сложный и глубокий характер. В еще одном шахматном примере (рис. 3.6) белым следует поставить слона на b4 и, используя его вместо пешки, вновь создать непреодолимый пешечный барьер (вместо весьма заманчивого, но безнадежного взятия черной ладьи на а5). Задача очень похожа на предыдущую, но компьютер (даже если он умеет создавать пешечный барьер) опять начинает ошибаться, поскольку эта задача требует значительно более высокого уровня понимания. Вы можете возразить, что при желании в программу можно ввести все уровни понимания, и вы были бы правы, если бы рассмотрение относилось только к шахматным задачам. Повторю, что шахматы относятся к «вычислимым» играм, поэтому при достаточно мощном компьютере и хорошей программе можно (по крайней мере, в принципе) рассчитать до конца все вероятности. Пока это никому не удалось проделать, однако нас устроит и принципиальная возможность получения такого решения в будущем. Тем не менее, я надеюсь, вы почувствовали, что в термине «понимание» содержится нечто, не сводящееся к прямому расчету. Совершенно определенно можно сказать, что человеческий подход к решению даже таких простых шахматных задач существенно отличается от компьютерного.


Еще от автора Стивен Хокинг
Краткие ответы на большие вопросы

Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.


Черные дыры и молодые вселенные

Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.


Теория всего. Происхождение и судьба Вселенной

Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.


Джордж и тайны Вселенной

По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».


Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Джордж и сокровища Вселенной

И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.


Рекомендуем почитать
Охотники за частицами

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы. Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.