Бесконечная сила - [12]

Шрифт
Интервал

Прислушиваясь к шипению этого змея-искусителя – но все же сдерживаясь, используя потенциальную бесконечность вместо более заманчивой актуальной, – математики научились решать задачу о длине окружности и другие загадки кривых. В следующих главах мы узнаем, как им это удалось, а пока попробуем еще глубже понять, насколько опасной может быть актуальная бесконечность. Этот грех ведет ко многим другим, включая тот, о котором учителя предупреждали нас в первую очередь.


Грех деления на ноль

Во всем мире школьников учат, что делить на ноль нельзя. Должно быть, они шокированы существованием такого табу. Предполагается, что числа дисциплинированны и хорошо себя ведут. Урок математики – место для логики и рассуждений. И все же можно задавать о числах простые вопросы, на которые нет ответов, или пытаться сделать с ними простые вещи, которые не работают или не имеют смысла. Деление на ноль – одна из них.

Корень проблемы – в бесконечности. Деление на ноль вызывает бесконечность примерно так же, как доска для спиритических сеансов – духов из другого мира. Это рискованно. Не ходите туда.

Тем, кто не в силах сопротивляться искушению и желает понять, почему в тенях скрывается бесконечность, советуем поделить 6 на какое-нибудь маленькое число, близкое к нулю, но не равное ему, например 0,1. В этом ничего запретного нет. Если разделить 6 на 0,1, получится 60, довольно прилично. Поделим 6 на еще меньшее число, скажем 0,01; ответ будет больше – 600. Если мы отважимся разделить 6 на число, которое гораздо ближе к 0, допустим, на 0,0000001, то ответ будет еще больше и составит 60 000 000. Тенденция ясна. Чем меньше знаменатель, тем больше частное. В пределе, когда знаменатель приближается к нулю, частное стремится к бесконечности. Вот настоящая причина, почему нельзя делить на 0. Малодушные говорят, что ответ неопределенный, но на самом деле он бесконечный.

Все это можно представить себе следующим образом. Вообразите, что вы делите 6-сантиметровую линию на части длиной 0,1 сантиметра. Получается 60 кусков, уложенных вплотную друг к другу.



Точно так же (но я не буду пробовать это нарисовать) эту линию можно поделить на 600 частей по 0,01 сантиметра или на 60 000 000 частей по 0,0000001 сантиметра.

Если мы продолжим и доведем это безумное деление до предела, то придем к заключению, что наша 6-сантиметровая линия состоит из бесконечного числа частей нулевой длины. Возможно, это звучит правдоподобно. В конце концов, линия состоит из бесконечного количества точек, и каждая точка имеет нулевую длину.

Но с философской точки зрения нервирует то, что аналогичное рассуждение можно применить к линии любой длины. В самом деле, в числе 6 нет ничего особенного. Мы могли бы с равным успехом утверждать, что линия длиной 3 сантиметра, или 49,57, или 2 000 000 000 состоит из бесконечного числа точек нулевой длины. Очевидно, что умножение 0 на бесконечность может дать нам любой мыслимый результат – 6, 3, 49,57 или 2 000 000 000. С математической точки зрения это ужасно.


Грех актуальной бесконечности

Прегрешение, которое втянуло нас в эту путаницу, заключалось в том, что мы вообразили, будто действительно можем достичь предела и трактовать бесконечность как достижимое число. Еще в IV веке до нашей эры греческий философ Аристотель[30] предупреждал, что такое обращение с бесконечностью способно привести к различным логическим неприятностям. Он выступал против актуальной бесконечности[31], уверяя, что смысл имеет только потенциальная бесконечность.

В контексте разрезания линии на части потенциальная бесконечность означает, что линию можно разрезать на сколь угодно большое количество частей, но оно всегда конечно, а длина частей не равна 0. Это вполне допустимо и не вызывает никаких логических затруднений.

Что запрещено – так это идея, что можно пройти весь путь до актуальной бесконечности и получить бесконечное число частей нулевой длины. Аристотель считал, что это ведет к бессмыслице – как в нашем случае, когда произведение бесконечности и 0 может дать любое число. Поэтому он запретил пользоваться актуальной бесконечностью в математике и философии. Математики поддерживали его мнение в течение следующих двадцати двух столетий.

Когда-то в далекие доисторические времена кто-то понял, что числа никогда не заканчиваются. Вместе с этой мыслью родилась бесконечность. Это числовой аналог глубин, скрытых в нашей психике, в наших ночных кошмарах о бездонных ямах и в наших надеждах на вечную жизнь. Именно бесконечность лежит в основе множества наших мечтаний, страхов и безответных вопросов. Насколько велика Вселенная? Сколько длится вечность? Насколько могуществен Бог? Тысячи лет бесконечность сбивает с толку лучшие умы человечества во всех областях мысли – от религии и философии до науки и математики. Ее запрещали, объявляли вне закона и отвергали. Во времена инквизиции монах Джордано Бруно[32] был сожжен заживо на костре за предположение, что Бог в своей бесконечной силе создал бесчисленные миры.


Парадоксы Зенона

Примерно за два тысячелетия до казни Джордано Бруно бесконечность осмелился созерцать другой отважный философ. Зенон Элейский (около 490–430 до нашей эры) изложил ряд апорий (парадоксов), связанных с пространством, временем и движением, и бесконечность играла в них главную роль. Эти апории предвосхитили идеи, положенные в основу анализа, и обсуждаются до сих пор. Бертран Рассел называл их неизмеримо тонкими и глубокими


Еще от автора Стивен Строгац
Ритм Вселенной. Как из хаоса возникает порядок

В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.На русском языке публикуется впервые.


Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.


Рекомендуем почитать
Что память сохранила. Воспоминания

В книге воспоминаний заслуженного деятеля науки РФ, почетного профессора СПбГУ Л. И. Селезнева рассказывается о его довоенном и блокадном детстве, первой любви, дипломатической работе и службе в университете. За кратким повествованием, в котором отражены наиболее яркие страницы личной жизни, ощутимо дыхание целой страны, ее забот при Сталине, Хрущеве, Брежневе… Книга адресована широкому кругу читателей.


Детство в европейских автобиографиях: от Античности до Нового времени. Антология

Содержание антологии составляют переводы автобиографических текстов, снабженные комментариями об их авторах. Некоторые из этих авторов хорошо известны читателям (Аврелий Августин, Мишель Монтень, Жан-Жак Руссо), но с большинством из них читатели встретятся впервые. Книга включает также введение, анализирующее «автобиографический поворот» в истории детства, вводные статьи к каждой из частей, рассматривающие особенности рассказов о детстве в разные эпохи, и краткое заключение, в котором отмечается появление принципиально новых представлений о детстве в начале XIX века.


История изучения восточных языков в русской императорской армии

Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.


Лето: Секреты выживания растений и животных в сезон изобилия

Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.


История викингов. Дети Ясеня и Вяза

Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.


Фон-Визин

«Представляемая мною в 1848 г., на суд читателей, книга начата лет за двадцать пред сим и окончена в 1830 году. В 1835 году, была она процензирована и готовилась к печати, В продолжение столь долгого времени, многие из глав ее напечатаны были в разных журналах и альманахах: в «Литературной Газете» Барона Дельвига, в «Современнике», в «Утренней Заре», и в других литературных сборниках. Самая рукопись читана была многими литераторами. В разных журналах и книгах встречались о ней отзывы частию благосклонные, частию нет…».


Как рождаются эмоции

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания. Эта книга совершает революцию в понимании эмоций, разума и мозга.


Семь с половиной уроков о мозге

Лиза Фельдман Барретт, известная ученая, занимающаяся исследованиями мозга, развенчивает мифы, настолько плотно укоренившиеся в нашем сознании, что многие годы они кажутся нам неопровержимыми научными фактами. Небольшие, интересные и понятные эссе (плюс одна короткая история об эволюции мозга) откроют вам дверь в удивительный мир человеческого разума. Вы узнаете, как начал формироваться мозг, какова его структура (и почему это важно понимать), как ваш мозг взаимодействует с мозгом других людей и создает всю ту реальность, в которой вы живете.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.