Бесконечная сила - [11]
Более изящное толкование состоит в том, что 0,333… представляет собой некоторый предел – в точности такой же, как предельный прямоугольник для наших фигур в доказательстве с пиццей или стена для незадачливого путешественника. Только здесь 0,333… отображает предел последовательных десятичных чисел, которые мы генерируем при делении 1 на 3. Чем больше этапов в процессе деления, тем больше троек в десятичном разложении 1/3. Мы можем получить сколь угодно хорошее приближение к 1/3. Если нам не нравится 1/3 ≈ 0,3, мы можем сделать еще шаг и получить 1/3 ≈ 0,33 и так далее. Я назову это толкование потенциальной бесконечностью Она «потенциальна» в том смысле, что приближения можно получать сколь угодно долго. Ничто не мешает сделать миллион, миллиард или любое иное количество шагов. Преимущество этого толкования в том, что нам незачем прибегать к такому туманному понятию, как бесконечность. Мы всегда можем оставаться в области конечного.
Для работы с равенством вида 1/3 = 0,333… не имеет значения, какой точки зрения мы придерживаемся. Они одинаково состоятельны и дают одни и те же математические результаты в любых нужных нам вычислениях. Однако в математике существуют ситуации, когда понятие актуальной бесконечности может вызвать логический хаос. Именно это я подразумевал, когда писал во введении о големе бесконечности. Иногда действительно важно, как мы думаем о результатах процесса, приближающегося к какому-то пределу. Делая вид, что процесс в реальности заканчивается и каким-то образом достигает нирваны бесконечности, подчас можно попасть в неприятную ситуацию.
Притча о многоугольнике с бесконечным числом углов
В качестве примера возьмем круг, расставим на его границе (окружности) через равные промежутки определенное количество точек и соединим их отрезками. При трех точках получим равносторонний треугольник, при четырех – квадрат, при пяти – правильный пятиугольник и так далее, последовательно получая все новые правильные многоугольники.
Обратите внимание, что чем больше точек мы используем, тем ближе наш многоугольник к кругу. При этом стороны многоугольников становятся все короче и многочисленнее. Наш круг – предел для построенных многоугольников.
Таким образом, бесконечность снова соединяет два мира. На этот раз она ведет нас от прямолинейности к криволинейности, от угловатых фигур к гладкому кругу, тогда как в случае с пиццей бесконечность, наоборот, преобразовала круг в прямоугольник.
Конечно же, на любом шаге многоугольник по-прежнему остается многоугольником. Это еще не круг и никогда им не станет. Фигуры приближаются к кругу, но никогда не совпадут с ним. Здесь мы имеем дело с потенциальной бесконечностью, а не с актуальной. Так что с логической точки зрения все безукоризненно.
Но что, если бы мы могли пройти весь путь до актуальной бесконечности? Был бы итоговый многоугольник с бесконечным количеством углов и бесконечно короткими сторонами кругом? Заманчиво так думать, ведь тогда многоугольник окажется гладким. Все углы будут сошлифованы. Все станет идеальным и красивым.
Здесь заложен общий принцип: пределы часто проще, чем приближения, ведущие к ним. Круг проще и изящнее, чем любой из угловатых многоугольников, к нему приближающих. То же самое относится и к доказательству с помощью пиццы, где предельный прямоугольник проще и элегантнее, нежели бугристые фигуры с некрасивыми выступами, и к дроби 1/3. Это проще и приятнее, нежели любое из неуклюжих приближений с большими числителями и знаменателями вроде 3/10, 33/100 или 333/1000. Во всех этих случаях предельная фигура или число проще и симметричнее, чем конечные приближения.
В этом и состоит очарование бесконечности. Здесь все становится лучше.
Помня об этом, давайте вернемся к притче о многоугольнике с бесконечно большим количеством углов. Нужно ли сделать решительный шаг и сказать, что круг – это действительно многоугольник с бесконечно большим количеством бесконечно малых сторон? Нет. Мы не должны поддаваться искушению и так поступать, поскольку это означает впасть в грех актуальной бесконечности. Это обрекло бы нас на логический ад.
Чтобы понять, почему, предположим, что мы на миг подумали, будто круг – на самом деле многоугольник с бесконечным числом углов и бесконечно малыми сторонами. Какова длина этих сторон? Если она равна 0, то общая длина всех сторон – бесконечность, умноженная на 0, – должна давать длину окружности. Но представьте окружность вдвое большего размера. Точно так же ее длина должна равняться бесконечности, умноженной на 0. Получается, бесконечность, умноженная на 0, должна равняться и длине нашей окружности, и вдвое большему числу. Что за ерунда? Не существует разумного способа определить результат умножения бесконечности на ноль, а потому нет разумного способа рассматривать круг как правильный многоугольник с бесконечным числом сторон.
Тем не менее в таком интуитивном представлении есть нечто искушающее. Подобно библейскому первородному греху, по той же причине трудно сопротивляться и первородному греху анализа – соблазну считать, что круг – это правильный многоугольник с бесконечным числом сторон. Он соблазняет нас запретным знанием, идеями, недоступными для обычных средств. На протяжении тысячелетий геометры пытались вычислить длину окружности. Если бы круг можно было заменить многоугольником со множеством крохотных прямых сторон, задача была бы гораздо проще.
В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.На русском языке публикуется впервые.
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.
В книге собраны воспоминания участников Отечественной войны 1812 года и заграничного похода российской армии, окончившегося торжественным вступлением в Париж в 1814 году. Эти свидетельства, принадлежащие самым разным людям — офицерам и солдатам, священнослужителям и дворянам, купцам и городским обывателям, иностранцам на русской службе, прислуге и крепостным крестьянам, — либо никогда прежде не публиковались, либо, помещенные в периодической печати, оказались вне поля зрения историков. Лишь теперь, спустя двести лет после Отечественной войны 1812 года, они занимают свое место в истории победы русского народа над наполеоновским нашествием.
Автор книги рассказывает о появлении первых календарей и о том, как они изменялись, пока не превратились в тот, по которому мы сейчас живем. Вы узнаете много интересного и познавательного о метрических системах, денежных единицах и увлекательных парадоксах физики, химии и математики. Занимательные исторические примеры, иллюстрируя сухие факты, превращаются в яркие рассказы, благодаря живому и образному языку автора.
Одна из первых монографий Александра Койре «Этюды о Галилее» представляет собой три, по словам самого автора, независимых друг от друга работы, которые тем не менее складываются в единое целое. В их центре – проблема рождения классической науки, становление идей Нового времени, сменивших антично-средневековые представления об устройстве мира и закономерностях физических явлений. Койре, видевший научную, философскую и религиозную мысли в тесной взаимосвязи друг с другом, обращается здесь к сюжетам и персонажам, которые будут находиться в поле внимания философа на протяжении значительной части его творческого пути.
В книге воспоминаний заслуженного деятеля науки РФ, почетного профессора СПбГУ Л. И. Селезнева рассказывается о его довоенном и блокадном детстве, первой любви, дипломатической работе и службе в университете. За кратким повествованием, в котором отражены наиболее яркие страницы личной жизни, ощутимо дыхание целой страны, ее забот при Сталине, Хрущеве, Брежневе… Книга адресована широкому кругу читателей.
Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.
Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.
Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания. Эта книга совершает революцию в понимании эмоций, разума и мозга.
Лиза Фельдман Барретт, известная ученая, занимающаяся исследованиями мозга, развенчивает мифы, настолько плотно укоренившиеся в нашем сознании, что многие годы они кажутся нам неопровержимыми научными фактами. Небольшие, интересные и понятные эссе (плюс одна короткая история об эволюции мозга) откроют вам дверь в удивительный мир человеческого разума. Вы узнаете, как начал формироваться мозг, какова его структура (и почему это важно понимать), как ваш мозг взаимодействует с мозгом других людей и создает всю ту реальность, в которой вы живете.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.