Альтернативные источники энергии и энергосбережение - [45]

Шрифт
Интервал

Когда солнечный свет поражает электроны в оксиде меди, некоторые из электронов получают достаточно энергии от солнечного света, чтобы подскочить мимо запрещенной зоны и стать свободными провести электричество. Батарея производит 50 мА в 0,25 В.

Свободные электроны перемещаются в соленую воду, затем в чистую медную пластину, в провод, через амперметр, и назад к окисленной пластине. Поскольку электроны перемещаются через амперметр, мы видим работу (ампер). Когда тень падает на солнечную батарею, электроны движутся медленнее и миллиампер меньше.

3.3. Практические конструкции солнечных батарей своими руками

Складная походная солнечная батарея на кристаллических фотоэлементах

В батарее были использованы четыре сборки из кристаллических фотоэлементов, приобретенные на сайте www.vampirchik-sun.nm.ru. Их характеристики будут рассмотрены в п. 3.4. Каждая сборка номинально давала приблизительно 2,2 В, 0,7 А. Внешний вид готовой конструкции представлен на рис. 3.6. Остальные фото в цвете от автора Андрея Шалыгина см. на http://mobipower.ru/modules.php?name=News&file=article&sid=227.

Батарея имела выходное напряжение до 10 В. Батарея состояла из четырех секций, которые складывались в книжку. Крепление между пластинами было выполнено с помощью пружины от старых календарей, или тетрадей (рис. 3.7).



Рис. 3.6.Внешний вид готовой конструкции



Рис. 3.7.Внешний вид готовой конструкции в походном положении


Каждая пара пластин имела отдельный выход. И их можно было подключать:

♦ либо последовательно для получения большего напряжения;

♦ либо параллельно, если нужен был больший ток, например, при зарядке от 1 до 4 пальчиков АА, либо использовать независимо.

Выводы солнечных элементов после пайки были герметизированы клеем. Поэтому дождь такой солнечной батарее не страшен.

Хотя разъемы желательно беречь от влаги. Сами же провода прекрасно расположились внутри витков пружины-шарнира. Для дополнительной надежности провода в пружине были пропущены в трубке.

Как известно, кристаллические фотоэлементы не терпят грубого обращения и ударов. Для их защиты был использован материал, который применяется при изготовлении рекламных конструкций. Он представляет собой трехслойную панель, наружные слои которой сделаны из алюминия, а середина заполнена пластмассой. Он довольно легкий и при этом прочный, практически не гнется, особенно при таких небольших размерах.

Для установки ламината с фотоэлементами, алюминий и пластик с одной стороны срезались по размеру ламината. В получившееся углубление вклеивался ламинат. Получилась достаточно жесткая и легкая конструкция. Да и внешний вид неплохой.

В общем, получилась вполне рабочая и надежная конструкция. И, несмотря на то, что были использованы хрупкие кристаллические элементы, ее вполне безопасно брать с собой на природу.

Общий вес конструкции — около 400–500 г. Ламинат с фотоэлементами клеился на эпоксидку, ей же заливались все открытые контакты «… и дождь, и снег ей были нипочем» (снега, конечно, не было (в августе), но воду лучше было смахивать — увеличивался ток). Скапливаться и впитываться воде было негде, поэтому батарея шла привязанной к байдарке, оставалась под дождем. Пряталась только электрическая часть с заряжаемыми устройствами.

Контакты после пайки в разъемах надо действительно чем-то заливать — «раз и навсегда» и ничего им не будет.

Все четыре пластины были соединены последовательно. Один выход непосредственно прямо с пластин, другой через диод, который также прекрасно расположился в центральной трубке внутри пружины-шарнира.

На холостом ходу тестер фиксировал 12 В с небольшим, а вот ток — не больше 400 мА, что заряжало через авто-«лягушку» аккумуляторы сотовых, фотоаппарата, до 6 шт. АА и ААА. Полностью автору аккумуляторы заряжать не получалось (много было желающих), но за 3–4 ч. «залива», фотоаппарат, сотовые с MP3 работали по 1–3 дня.

В начале похода автор переживал за хрупкость конструкции, но на практике она многое выдержала: падения, удары, сжатие с обеих сторон пластин. Витые пружинки от Тетради (69 листов) практически не позволяли пластинам соприкасаться (амортизировали), если только при сильном сжатии, и на деле это ни к чему плохому не привело, пластины соприкасались равномерно.

По периметру солнечной батареи были сделаны отверстия для ее крепежа (подвеса).


Самодельная солнечная батарея, залитая эпоксидкой на стекле

Рассмотрим опыт создания создании более мощной, но уже стационарной солнечной батареи, из ФЭП (фото электрических преобразователей) на эпоксидной смоле. Для создания были приобретены (Андрей Шалыгин, http://mobipower.ru) сами ФЭПы на заводе-изготовителе: ОАО «ПХМЗ» (Подольский химико-металлургический завод) в количестве 50 шт. (1 упаковка) за 4000 руб.

Толщина ФЭПа — 0,2 мм, они очень хрупкие, поэтому при пайке необходимо соблюдать температурный режим (380 °C). Иначе ФЭП лопается.

Оптимальным оказался вариант использования для пайки готовой облуженной медной шинки, используемой по такому же назначению (спайка ФЭПов) на предприятии «Телеком СТВ» г. Зеленоград.

48 последовательно соединенных ФЭПов выдавали холостого напряжения 26 В. Ток, который шел в нагрузку — зарядку 10 последовательно соединенных свинцовых банок по 1,2 В емкостью 2000 А-ч (используются в железнодорожных локомотивах, каждая весит около 10 кг) составлял выше 5 А (!). При этом напряжение проседало до 14 В. Зарядка проводилась напрямую по довольно-таки большому сечению провода практически без потерь, только один диод. Этот показатель был достигнут при облачном небе, т. е. далеко не предел.


Рекомендуем почитать
Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.