Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [76]
Последовательность Рекамана
Столкновение порядка и беспорядка в последовательности Рекамана можно выразить и музыкально. В «Энциклопедии» имеется функция, позволяющая прослушать любую последовательность, как если бы она была записана с помощью нот. Представим себе, что имеется фортепиано с 88 клавишами (что составляет диапазон чуть меньше восьми октав). Число 1 соответствует самой нижней ноте, число 2 — второй ноте снизу, и так далее, до числа 88, которое соответствует самой верхней ноте. Когда ноты заканчиваются, мы опять начинаем снизу, так что число 89 возвращает нас к первой клавише. Натуральные числа 1, 2, 3, 4, 5 звучат как восходящая гамма, повторяющаяся без конца. Но музыка, создаваемая последовательностью Рекамана, леденит кровь. Она подобна саундтреку из фильма ужасов. Она звучит негармонично, однако не воспринимается как нечто совершенно хаотичное. Можно различить отчетливые музыкальные фразы, как если бы за какофонией скрывалось творение таинственной человеческой руки[49].
Вопрос, который интересует математиков, — все ли числа встречаются в последовательности Рекамана. Были изучены 10>25 членов последовательности, и оказалось, что наименьшее из не присутствующих чисел — это 852 655. Слоун подозревает, что в конце концов в этой последовательности появятся все числа, включая и 852 655, но это его предсказание пока не доказано. Нет ничего удивительного в том, что Слоун находит последовательность Рекамана столь увлекательной.
Другой фаворит Слоуна — это последовательность Гийсвийта[50]. В отличие от многих последовательностей, которые растут с победоносной быстротой, последовательность Гийсвийта растет с тягучей неторопливостью, способной свести с ума. Она представляет собой прекрасную метафору идеи «никогда не сдаваться»:
(А90822) 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2…
Первая тройка появляется на девятом месте. Четверка первый раз возникает на 221-м месте. Появление пятерки ожидается не раньше, чем ад замерзнет — она возникнет на месте с номером 10>100000000000000000000000.
Это экстремально большое число. Например, вся Вселенная содержит только 10>80 элементарных частиц. В конце концов появится и шестерка, но на таком расстоянии от начала, которое разумно можно описать только как степень степени степени степени степени:
. Остальные числа тоже рано или поздно возникнут, хотя — и это следует подчеркнуть — не выказывая при этом решительно никакой спешки. «Земля умирает, даже океаны умирают, — замечает Слоун с поэтическим пафосом, — но приют и спасение можно найти в абстрактной красоте последовательности типа А090822 Диона Гийсвийта».Древние греки уделяли простым числам серьезное внимание. Но еще больше они были очарованы числами, которые называли совершенными. Рассмотрим число 6: числа, на которое оно делится, его делители, — это 1, 2 и 3. Если сложить 1, 2 и 3 — voilà, снова получается 6. Совершенное число — это любое число, которое, подобно шестерке, равно сумме своих делителей. (Строго говоря, у 6 есть еще делитель 6, но при рассмотрении совершенных чисел имеет смысл включать только те делители, которые меньше данного числа.) Следующее за шестеркой совершенное число — это 28, потому что числа, на которые оно делится, — это 1, 2, 4, 7 и 14, а их сумма равна как раз 28. Не только греки, но и евреи и христиане приписывали космологическое значение такому численному совершенству. Живший в XI веке выдающийся богослов и писатель Рабан Мавр писал: «Шесть не потому совершенно, что Бог сотворил мир за 6 дней, но Бог совершил акт творения за 6 дней потому, что число это совершенно».
Греки обнаружили также неожиданную связь между совершенными и простыми числами, которая породила многочисленные связанные с ними приключения. Рассмотрим последовательность удвоений, начинающуюся с 1:
(А 79) 1, 2, 4, 8, 16…
В своих «Началах» Евклид показал, что всегда, когда сумма удвоений есть простое число, можно найти совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят. Это звучит как малопонятная тирада, так что давайте начнем складывать удвоения, чтобы увидеть, что же все это означает.
1 + 2 = 3. Число 3 простое, так что мы умножим 3 на старшее из наших удвоений, то есть на 2: 3 × 2 = 6, а число 6 совершенно.
1 + 2 + 4 = 7. Число 7 снова простое. Поэтому умножим 7 на 4, что даст еще одно совершенное число, а именно 28.
1 + 2 + 4 + 8 = 15. Это число не простое. Не появится здесь и совершенного числа.
1 + 2 + 4 + 8 + 16 = 31. Это число простое, а 31 × 16 = 496 — совершенное число.
1 + 2 + 4 + 8 +16 + 32 = 63. Это число не простое.
1 + 2 + 4 + 8 + 16 + 32 + 64 = 127. Это число также простое, а 127 × 64 = 8128 — совершенное число.
Доказательство Евклида было, конечно, геометрическим. Он не записывал его в терминах чисел, а использовал отрезки прямых. Однако если бы он мог позволить себе роскошь современных алгебраических обозначений, то заметил бы, что сумму удвоений 1 + 2 + 4 +… можно выразить как сумму степеней двойки, 2>0 + 2>1 + 2>2 +… (Заметим, что любое число в степени 0 есть 1 и что любое число в степени 1 есть само это число.) Тогда становится понятным, что любая сумма удвоений равна следующему удвоению за вычетом единицы. Например:
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.
Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…