Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [74]

Шрифт
Интервал

В коллекции имеется также дьявольская последовательность:

(А51003) 666, 1666, 2666, 3666, 4666, 5666, 6660, 6661…

Она составлена из так называемых Чисел Зверя — чисел, содержащих фрагмент 666.

Ради забавы Слоун также включил и такую последовательность:

(А38674) 2, 2, 4, 4, 2, 6, 6, 2, 8, 8, 16.

Это числа из латиноамериканской детской песенки «La Farolera»: «Dos у dos son quatro, cuatro у dos son seis. Seis у dos son ocho, у ocho dieciseis» (Два и два — четыре, четыре и два — шесть, шесть и два — восемь и т. д.).

Но самая, быть может, классическая из всех последовательностей — это последовательность простых чисел:

(А40) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37…

Простые числа — это натуральные числа большие единицы, которые делятся только на себя и на единицу. Их очень просто описать, но их последовательность демонстрирует весьма впечатляющие, а временами и таинственные свойства. Во-первых, как доказал Евклид, простых чисел бесконечно много. Какое бы число вы ни взяли, всегда найдется простое число большее, чем данное. Во-вторых, каждое натуральное число больше 1 записывается — причем существует только один вариант — как произведение простых чисел. Другими словами, каждое число равно результату перемножения определенного набора простых чисел. Например, 221 есть 13 × 17. Следующее число, 222, есть 2 × 3 × 37. Идущее за ним — 223 — простое, так что можно записать только 1 × 223, а 224 есть 2 × 2 × 2 × 2 × 2 × 7. И так можно продолжать до бесконечности. Например, миллиард равен 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5. Это свойство чисел известно как фундаментальная теорема арифметики, и именно оно определяет, почему простые числа рассматриваются как неделимые кирпичики всей системы натуральных чисел.

Однако, несмотря на свою особенность, простые числа не обладают монополией на производство последовательностей, несущих в себе специальные секреты математического порядка (или беспорядка). Все последовательности так или иначе способствуют нашему лучшему пониманию того, как устроены числа. «Онлайн-энциклопедию целочисленных последовательностей» можно также рассматривать как собрание разнообразных примеров, справочное руководство по численному порядку, лежащему в основании мира. Возникнув из личного пристрастия Нила Слоуна, этот проект оказался действительно важным научным ресурсом.

Слоун считает «Энциклопедию» математическим эквивалентом хранящейся в ФБР базы данных по отпечаткам пальцев. «Взяв отпечатки пальцев на месте преступления, их затем проверяют по базе с целью опознать подозреваемого, — говорит он. — То же самое и с „Энциклопедией“. Математики, столкнувшись с какой-то последовательностью чисел, которая естественным образом возникла в ходе их работы, смотрят в базе, — и страшно радуются, если оказывается, что их последовательность там уже есть». Такая база данных приносит пользу не только чистым математикам. Инженеры, химики, физики и астрономы также искали и находили свои последовательности в «Энциклопедии», таким образом обнаруживая неожиданные междисциплинарные связи и глубже проникая в суть своей собственной области знания. Если люди работают в области, постоянно изрыгающей недоступные для понимания числовые последовательности, которым они надеются придать некий смысл, то такая база данных — настоящая золотая жила.

«Энциклопедия» позволяет Слоуну быть в курсе множества новых математических идей, а кроме того, он проводит часть времени, рождая свои собственные. В 1973 году он предложил концепцию «продолжительности жизни» числа. Она измеряется числом шагов, которое требуется сделать, чтобы получить однозначное число, перемножая все цифры предыдущего числа, затем перемножая все цифры полученного числа, что даст третье число, и т. д., пока не получится однозначное число. Например, 88 → 8 × 8 = 64 → 6 × 4 = 24 → 2 × 4 = 8. Таким образом, говорит Слоун, число 88 имеет продолжительность жизни, равную 3, поскольку требуются три шага, чтобы добраться до одной цифры. Кажется, что чем больше число, тем выше его продолжительность жизни. Например, 679 имеет продолжительность жизни, равную 5: 679 → 378 → 168 → 48 → 32 → 6. Подобным же образом, слегка потрудившись, можно узнать, что число 277 777 788 888 899 имеет продолжительность жизни, равную 11. Однако Слоуну не удалось найти числа, продолжительность жизни которого была бы больше 11, даже после того, как он перебрал все числа до 10>233, что есть единица с 233 нулями. Другими словами, какое бы 233-значное число вы ни выбрали, применив к нему правила перемножения цифр для определения продолжительности жизни, вы непременно доберетесь до одной-единственной цифры за 11 шагов или ранее.

Этот результат восхитительным образом противоречит нашей интуиции. Казалось бы, если взять число, состоящее из 200 или около того цифр, причем по большей части из больших цифр, скажем восьмерок и девяток, то произведение всех этих цифр окажется достаточно большим, и для того, чтобы в конце концов добраться до однозначного числа, потребуется существенно больше и шагов. Однако, как оказалось, большие числа схлопываются под собственным весом. Дело в том, что если в числе хоть раз появится нуль, то произведение всех его цифр окажется равным нулю. Если в числе, с которого вы начали, нет нулей, то нуль непременно появится на 11-м шаге, если только число уже не свелось к этому моменту к единственной цифре. Слоун считает свой алгоритм необычайно эффективным убийцей чисел-гигантов.


Еще от автора Алекс Беллос
Красота в квадрате

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Почему панда стоит на голове и другие удивительные истории о животных

Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.


Империя звезд, или Белые карлики и черные дыры

Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…