Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [123]
Вот как это делается. Вообразим себе, что первый из прибывших одет в футболку с разложением 0,6429657, второй — 0,0196012 и администратор отводит им номера 1 и 2. И пусть он так и продолжает назначать номера следующим, кто прибывает, в результате у него получается бесконечный список, начало которого выглядит следующим образом (не будем забывать еще, что разложения продолжаются до бесконечности):
Номер 1 | 0,6429657… |
Номер 2 | 0,0196012… |
Номер 3 | 0,9981562… |
Номер 4 | 0,7642178… |
Номер 5 | 0,6097856… |
Номер 6 | 0,5273611… |
Номер 7 | 0,3002981… |
Номер… | 0…. |
… | … |
Наша цель, как было сказано, состоит в том, чтобы предъявить десятичное разложение, лежащее между 0 и 1, которого нет в этом списке. Мы этого добьемся, используя следующий метод. Сначала построим число, первая десятичная цифра которого совпадает с первой десятичной цифрой из номера 1, вторая десятичная цифра — со второй из номера 2, третья — с третьей из номера 3 и т. д. Другими словами, мы выберем цифры, стоящие на диагонали. Для удобства мы их подчеркнем:
Номер 1 | 0,6429657… |
Номер 2 | 0,0196012… |
Номер 3 | 0,9981562… |
Номер 4 | 0,7642178… |
Номер 5 | 0,6097356… |
Номер 6 | 0,5273611… |
Номер 7 | 0,3002981… |
Номер… | 0…. |
… | … |
Полученное число такое: 0,6182811….
Мы почти у цели. Теперь, в качестве последнего действия, построим число, которого нет в списке администратора: изменим каждую цифру в только что полученном числе, прибавляя 1 к каждой цифре, так что 6 станет 7, 1 станет 2, 8 станет 9 и т. д.; в результате получится число
0,7293922….
Это оно и есть! Это то самое десятичное разложение, не включенное в список, которое мы искали. Оно не может быть в списке администратора, потому что мы искусственно построили его таким, чтобы оно там не содержалось. Это не число из номера 1, потому что его первая цифра отлична от первой цифры числа из номера 1. Наше число — не из номера 2, потому что его вторая цифра отлична от второй цифры числа из номера 2, и т. д. — откуда видно, что наше число не может относиться ни к какому номеру n, потому что его n-я цифра непременно отлична от n-й цифры в разложении из номера n. Поэтому наше хитрое разложение 0,7293922… не может быть равным никакому из разложений, написанных на футболках путешественников, расселенных по номерам отеля, ведь всегда по крайней мере одна цифра из этого десятичного разложения будет отличаться от десятичного разложения, приписанного данному номеру. В списке вполне может оказаться число, первые семь десятичных цифр которого равны 0,7293922, и, однако же, оно будет отличаться от нашего специального числа по крайней мере одной цифрой где-то дальше в разложении. Другими словами, даже если администратор все дальше и дальше будет продолжать раздавать номера, он не сможет найти номер для путешественника, на котором надета футболка с придуманным нами числом, которое начинается как 0,7293922….
Я взял список, начинающийся с произвольных чисел 0,6429657… и 0,0196012…, но равным образом я мог бы рассмотреть список, начинающийся с любых других чисел. Для каждого списка, который можно создать, всегда удастся выписать, используя предложенный выше «диагональный» метод, такое число, которое в данном списке не присутствует. Пусть в Гильбертовом отеле бесконечное число номеров, но в нем нельзя расселить такое бесконечное число людей, которое определяется десятичными разложениями всех чисел между 0 и 1. Всегда кто-то останется на улице. Отель для этого просто недостаточно вместительный[72].
Сделанное Кантором открытие того, что имеется бесконечность большая, чем бесконечность натуральных чисел, было одним из величайших математических прорывов XIX столетия. Это сногсшибательный результат, и сила его не в последнюю очередь определяется тем, что его совсем несложно объяснить: некоторые бесконечности — счетные, и их размер равен ℵ>0, а некоторые бесконечности — не счетные, а потому большие. И эти несчетные бесконечности тоже могут иметь различные размеры.
Самая простая для понимания несчетная бесконечность называется с, она выражает число людей, прибывших в Гильбертов отель одетыми в футболки со всеми десятичными разложениями между 0 и 1. Подобно тому, что мы делали выше, поучительно интерпретировать с, глядя на числовую прямую. Каждый персонаж с десятичным разложением между 0 и 1 на футболке можно также понимать как точку на прямой, лежащую между 0 и 1. Символ с был исходно выбран потому, что он напоминает о слове «континуум» — непрерывном множестве точек на числовой прямой.
И здесь мы подошли к еще одному странному результату. Мы знаем, что имеется с точек, лежащих между 0 и 1, но при этом мы также знаем, что имеется ℵ>0 дробей на всей числовой прямой, взятой целиком. Поскольку мы доказали, что с превосходит ℵ>0, получается, что на отрезке прямой между 0 и 1 помещается больше точек, чем имеется точек, представляющих дроби на всей числовой прямой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.
Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…