Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [125]

Шрифт
Интервал

Обнаружив кардинальное число ℵ>0, Кантор не остановился и доказал, что имеются даже еще большие бесконечности. Как мы видели, c — это число точек на прямой. Оно же есть число точек на двумерной поверхности. (Еще один удивительный результат, который вам придется принять с моих слов на веру.) Пусть d — число всевозможных кривых, линий и загогулин, которые можно нарисовать на двумерной поверхности. Используя теорию множеств, можно доказать, что d больше, чем с. Можно двинуться и дальше — показать, что должна иметься бесконечность еще бо́льшая, чем d Никто, впрочем, не смог предъявить множество вещей, кардинальное число которого было бы больше, чем d.

Кантор увел нас далеко за пределы вообразимого. Это довольно чудесное место и, занятным образом, противоположное тому, в котором пребывает племя в бассейне Амазонки, о котором говорилось в начале книги. У мундуруку много вещей, но не хватает чисел, чтобы их пересчитать. Кантор предоставил нам числа в неограниченном избытке, зато теперь у нас не хватает вещей, которые можно было пересчитывать с их помощью.

Список литературы

Подробную библиографию по каждой главе, а также приложения можно найти на веб-сайте www.alexbeIlos.com. Ниже перечислены наиболее существенные книги, из которых я почерпнул информацию.

Acheson D. 1089, and All That. New York: Oxford University Press. 2002.

Aczel A. D. Chance. New York: Basic Books, 2005.

Aczel A. D. The Mystery of the Aleph. New York: Washington Square Press, 2000.

Andrews F. E. New Numbers. London: Faber & Faber, 1936. Balliett L. D. The Philosophy of Numbers. Atlantic City, N.J.: L. N. Fowler & Co., 1908.

Beckmann P. A History of Pi. New York: St. Martin’s, 1971.

Bell E. T. Numerology. New York: Century, 1933.

Bell E. T. Men of Mathematics. New York: Touchstone, 1937.

Bennett D. J. Randomness. Cambridge: Harvard University Press. 1998.

Bentley P. J. The Book of Numbers. London: Cassell Illustrated, 2008.

Berggren L., Borwein J., and Borwein P. Pi: A Source Book. New York: Springer, 2003.

Butterworth B. The Mathematical Brain. London: Macmillan, 1999.

Cajori F. A History of Mathematical Notations. New York: Dover, 1993 (facsimile of original by Illinois: Open Court, 1928/9).

Cohen I. B. The Triumph of Numbers. New York: W. W. Norton, 2005.

Darling D. The Universal Book of Mathematics. Hoboken, N.J.: Wiley, 2004.

Dehaene S. The Number Sense. Oxford: Oxford University Press, 1997.

Derbyshire J. Unknown Quantity. London: Atlantic Books, 2006.

Devlin K. All the Math That's Fit to Print. Washington: Mathematical Association of America, 1994.

Dudley U. Numerology. Washington: Mathematical Association of America, 1997.

Dudley U. (ed.). Is Mathematics Inevitable? Washington: Mathematical Association of America, 2008.

Du Sautoy M. Finding Moonshine. London: Fourth Estate, 2008.

Du Sautoy M. The Music of the Primes. London: Fourth Estate, 2003.

Eastaway R., Wyndham J. How Long Is a Piece of String? London: Robson Books, 2002.

Eastaway R., Wyndham J. Why Do Buses Come in Threes? London: Robson Books, 1998.

Ferguson K. The Music of Pythagoras. New York: Walker, 2008.

Fibonacci L. Fibonacci’s Liber Abaci. New York: Springer, 2002.

Gardner M. Martin Gardner's Mathematical Games. Washington: Mathematical Association of America, 2005.

Gowers T. Mathematics: A Very Short Introduction. Oxford: Oxford University Press, 2002.

Gullberg J. Mathematics: From the Birth of Numbers. New York: W. W. Norton, 1997.

Hidetoshi F., Rothman T. Sacred Mathematics. Princeton: Princeton University Press, 2008.

Hodges A. One to Nine. London: Short Books, 2007.

Hoffman P. The Man Who Loved Only Numbers. London: Fourth Estate, 1998.

Hogben L. Mathematics for the Million. London: George Allen & Unwin, 1936.

Hull T. Project Origami. Natick, Mass.: AK Peters, 2006.

Ifrah G. The Universal History of Numbers. Hoboken, N.J.: Wiley, 2000.

Joseph G. G. Crest of the Peacock. London: Penguin, 1992.

Kahn С. H. Pythagoras and the Pythagoreans: A Brief History. Indianapolis, Ind.: Hackett Publishing Company, 2001.

Knott K. Hinduism: A Very Short Introduction. Oxford: Oxford University Press. 1998.

Livio M. The Golden Ratio. London: Review, 2002.

Loomis E. S. The Pythagorean Proposition. Urbana, Ill.: National Council of Teachers, 1968.

Maor E. Trigonometric Delights. Princeton: Princeton University Press, 1998.

Matzusawa T. (ed.). Primate Origins of Human Cognition and Behavior. Tokyo: Springer, 2001.

Mazur J. Euclid in the Rainforest. New York: Plume, 2005.

Mlodinow L. Euclid’s Window. New York: Free Press, 2001.

Mlodinow L. The Drunkard’s Walk. London: Allen Lane, 2008.

Nelsen R. B. Proofs Without Words. Washington: Mathematical Association of America, 1993.

Newman J. (ed.). The World of Mathematics. New York: Dover, 1956.

O’Shea D. The Poincarez' Conjecture. New York: Walker, 2007.

Pickover C. A. A Passion for Mathematics. Hoboken, N.J.: Wiley, 2005.

Pickover C. A. The Zen of Magic Squares, Circles, and Stars. Princeton: Princeton University Press, 2002.

Poundstone W. Fortune’s Formula. New York: Hill and Wang, 2005.

Riedwig C. Pythagoras: His Life, Teaching, and Influence.


Еще от автора Алекс Беллос
Красота в квадрате

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Рекомендуем почитать
Очерки жизни и быта нижегородцев в начале XX века. 1900-1916

Эта книга известного нижегородского краеведа не была издана при жизни автора и после его смерти пролежала в семейном архиве 26 лет. Написанная на основе архивных материалов и личных воспоминаний автора, книга показывает жизнь и быт нижегородцев с 1900 по 1916 гг. В данное издание вошли избранные главы книги. Книга предназначена всем, кто интересуется историей Нижегородского края.


Темные архивы. Загадочная история книг, обернутых в человеческую кожу

Ряд старинных книг, на первый взгляд ничем не отличающихся от других антикварных изданий, стал отправной точкой для странного и шокирующего исследования библиотекаря и журналистки Меган Розенблум. Главная их тайна заключалась отнюдь не в содержании, а в обложках: они были сделаны из человеческой кожи. Откуда произошли эти книги, и кто стоял за их созданием? Для чьих коллекций делались антроподермические издания, и много ли таких было сделано? В «Темных архивах» Меган Розенблум рассказывает, как она совместно с командой ученых, экспертов и других библиотекарей изучала эту мрачную тему, как, идя по следам различных слухов, они пытались выяснить правду.


Эволюция красоты. Как дарвиновская теория полового отбора объясняет животный мир – и нас самих

Все знают теорию естественного отбора (выживает сильнейший), описанную Чарльзом Дарвином. Не все знают другую его теорию – полового отбора, который уходит в область эстетики: эволюция идет по пути красоты, и это наиболее заметно у птиц: самки выбирают самого красивого или музыкального, а не самого сильного и живучего самца. Выбор наиболее привлекательного признака партнера формируется поколение за поколением, и в итоге этот признак становится определяющим для вида. И тот же эстетический принцип вносит свою лепту в эволюцию всех живых существ, включая человека. Эта книга для тех, кому интересна природа красоты и привлекательности, биология и орнитология в частности. На русском языке публикуется впервые.


Неоткрытые миры

Эта книга научных историй особенная, она — не об ответах, а о вопросах. Она рассказывает не столько про достижения науки, сколько про нерешённые научные проблемы, про несозданные теории и неизвестные законы природы — другими словами, про ещё не открытые острова в науке. Если юный читатель хочет заняться изучением чудес космоса, исследованием динозавров или расшифровкой таинственных рукописей, то ему непременно надо прочитать эту книгу, которая может стать картой на пути к terra incognita и к разгадкам увлекательных тайн, которые нас окружают.


Грипп. В поисках смертельного вируса

Какая болезнь самая смертоносная? Чума? Холера? Тиф? Рак? СПИД? ГРИПП! Ученые утверждают: именно гриппу принадлежит «абсолютный рекорд» по убийственной силе. Более того – ни одна война в истории человечества, включая Вторую мировую, не способна сравниться с этим вирусом по числу жертв. Когда в 1918 году эпидемия «испанки» унесла жизни почти 100 миллионов человек, многие сочли это началом Апокалипсиса. Что же современные ученые могут противопоставить вирусу-убийце? И главное – есть ли у нас шанс уцелеть при следующей пандемии? Перевод: Игорь Моничев.


Знание-сила, 1997 № 09 (843)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Искушение астрологией, или Предсказание как искусство

Книга посвящена истории астрологии, заблуждениям и идеям, ее питавшим.Кого только не встретишь на страницах этой книги! Тут и Птолемей, и Коперник, и Тихо Браге, и Иоганн Кеплер.Сегодняшняя наука вынесла свой вердикт. Астрология признана лженаукой, но почему человечество никак не может забыть о ней, почему астрологические прогнозы по-прежнему привлекают внимание самых разных людей? Видно, желание заглянуть в будущее неистребимо, и так хочется верить, что звезды, таинственно мерцающие в небесах, все о нас знают…


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…


Десять величайших открытий в истории медицины

В истории медицины были открытия, без которых она никогда не стала бы современной наукой, способной порой творить настоящие чудеса и вылечивать даже самые тяжелые болезни. Именно о таких открытиях и рассказывают известные американские врачи кардиолог Мейер Фридман и радиолог Джеральд Фридланд. Повествуя о выдающихся ученых, об их жизни и об их времени, об их предшественниках и последователях. авторы создают яркие образы великого анатома Везалия, открывателя мира бактерий Левенгука, борцов с инфекционными болезнями Пастера и Коха.