А ну-ка, догадайся! - [47]
>Ученый. Я обнаружил нечто нечерное — желтую гусеницу. Гусеница — явно не ворона, и ее можно рассматривать как пример, подкрепляющий правильность утверждения «Все, что не черно, неворона» и, следовательно, эквивалентного утверждения «Все вороны черные».
>Нетрудно найти миллионы нечерных объектов, каждый из которых не является вороной. Можно ли рассматривать их как примеры, подкрепляющие правильность утверждения «Все вороны черные»?
>По мнению изобретателя этого парадокса профессора Карла Гемпеля, рыжая корова увеличивает вероятность того, что все вороны черные. Другие философы придерживались иного мнения. А как по-вашему?
Парадокс Гемпеля — наиболее известный из открытых сравнительно недавно парадоксов, связанных с подтверждением истинности того или иного утверждения. «Заманчивая перспектива, открываемая перед нами возможностью решать орнитологические проблемы, не выходя под дождь, — замечает Нельсон Гудмен (см. следующий парадокс), — настолько заманчива, что не может не таить в себе какого-то подвоха».
Проблема состоит в том, чтобы указать, где именно скрыт подвох. По мнению самого Гемпеля, наблюдение нечерного объекта, не являющегося вороной, может рассматриваться как пример, подкрепляющий утверждение «Все вороны черные», но лишь в бесконечно малой мере. Предположим, что мы проверяем гипотезу о небольшом числе объектов, например о 10 игральных картах, разложенных на столе вверх рубашкой. Пусть наша гипотеза состоит в том, что все черные карты пики. Начнем переворачивать карты одну за другой вверх картинкой. Каждый раз, когда перевернутая карта окажется пиковой масти, мы получим пример, подкрепляющий нашу гипотезу.
Сформулируем ту же гипотезу несколько иначе: «Все карты непиковой масти красные». Ясно, что каждая перевернутая нами карта непиковой масти и к тому же красная подтверждает первоначальный вариант гипотезы. Действительно, если первая карта окажется пиковой масти и, следовательно, черной, а остальные 9 карт окажутся красными и непиковой масти, то наша гипотеза блестяще подтвердится.
Эта же процедура, применяемая к нечерным неворонам, считает Гемпель, кажется нам столь странной потому, что множество неворон на Земле неизмеримо больше множества ворон, поэтому нечерная неворона подтверждает нашу гипотезу лишь в пренебрежимо малой мере. Если мы, находясь у себя дома и заведомо зная, что никаких ворон у нас нет, оглядим свое жилище в поисках неворон, то не приходится удивлятся тому, что у нас дома не окажется ни одной нечерной вороны.
Тем не менее если мы, не располагая дополнительными сведениями об отсутствии в нашем доме всяких ворон, обнаружим нечерную неворону, то в теоретическом плане такая находка подтверждает гипотезу о том, что все вороны черные.
Противники Гемпеля ссылаются на то, что открытие, например, желтой гусеницы или рыжей коровы с тем же основанием можно рассматривать как пример, подтверждающий гипотезу «Все вороны белые».
Но как может один и тот же объект подтверждать правильность и гипотезы «Все вороны черные», и гипотезы «Все вороны белые»? Парадоксу Гемпеля посвящена обширная литература. Этот парадокс играет основную роль в дискуссии о подтверждении знания, которой посвящена статья Весли Солмона «Подтверждение» (Scientific American, май 1973).
>Вот еще один знаменитый парадокс теории подтверждения, основанный на том, что многие предметы со временем изменяют свой цвет. Зеленые яблоки, созревая, становятся красными, волосы к старости седеют, серебро со временем чернеет.
>Нельсон Гудмен называет предмет «зелубым», если тот удовлетворяет двум условиям: во-первых, остается зеленым до конца века и, во-вторых, становится голубым после 2000-го года.
>Рассмотрим два различных высказывания: «Все изумруды зеленые» и «Все изумруды зелубые». Какое из них надежно?
>Как ни странно, оба утверждения подкреплены одинаково надежно! Каждое когда-либо сделанное наблюдение изумруда может рассматриваться как пример, подкрепляющий оба утверждения, в то время как ни один контрпример не известен! Объяснить сколько-нибудь вразумительно, почему одно утверждение следует принять, а другое отвергнуть, не так-то просто.
Парадоксы Гемпеля и Гудмена показывают, как мало мы понимаем истинную роль, отводимую статистике в научном методе. Мы лишь знаем, что без статистических методов наука не могла бы продолжать извечный поиск законов, действующих в нашей загадочной Вселенной.
6. ВРЕМЯ
Парадоксы о движении, сверхзадачах, путешествиях во времени и обращении времени
От мельчайших субатомных частиц до гигантских галактик наша Вселенная находится в состоянии непрестанного изменения; ее чудесная мозаика каждую микросекунду трансформируется в неумолимом «потоке» времени. (Слово «поток» я взял в кавычки потому, что в действительности течет Вселенная. Утверждать, будто время течет, так же бессмысленно, как утверждать, что длина простирается.)
Трудно представить себе реальный мир без времени. Объект, существующий лишь в течение нулевого времени 0 секунд), не существовал бы вообще. Или существовал бы? Во всяком случае, течение Вселенной достаточно равномерно для того, чтобы мы могли производить измерения, а измерения порождают числа и уравнения. Можно считать, что время не входит в чистую математику, но в прикладной математике от элементарной алгебры до математического анализа и далеко за его пределами имеется немало проблем, в которые время входит как фундаментальная переменная.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.