А ну-ка, догадайся! - [46]

Шрифт
Интервал


Этот любопытный парадокс можно продемонстрировать на карточной модели. Пусть красные карты соответствуют приятным собеседникам, черные — унылым сухарям, крест, поставленный карандашом на рубашке карты, — усам, а отсутствие креста — гладко выбритому лицу.

Пометим крестами 5 красных и 6 черных карт.

Добавим к ним 3 красные и 4 черные карты без крестов на рубашках. Всего у нас наберется 18 карт.

Это мужчины, собравшиеся в Восточной комнате.

Перетасуйте 18 карт и разложите их на столе вверх рубашкой. Какую карту вам следует выбрать— с крестом или без креста на рубашке, если вы хотите с наибольшей вероятностью вытянуть красную карту? Нетрудно подсчитать, как это сделано на рисунках, что вероятность вытащить красную карту максимальна, если вы выберете карту, помеченную крестом.

Аналогичным образом постройте модель компании, собравшейся в Западной комнате. Пометьте крестами рубашки 6 красных и 3 черных карты. Добавьте к ним 9 красных и 5 черных карт, не помеченных крестом. Всего у вас наберется 23 карты. Перетасуйте их и разложите вверх рубашкой. Нетрудно доказать, что и в этом случае ваши шансы вытянуть красную карту максимальны, если вы выберете карту, помеченную крестом.

Объедините теперь обе группы карт в одну колоду из 41 карты. Перетасуйте ее и разложите карты вверх рубашкой. Трудно поверить, но, проделав все вычисления, вы обнаружите, что наибольший шанс вытащить красную карту будет у вас в том случае, если вы выберете карту, не помеченную крестом.

С подобными парадоксами статистики сталкиваются, например, при анализе действия лекарств. Обратимся снова к той же карточной модели. На этот раз карты будут изображать две группы пациентов, на которых испытывалось действие лекарственного препарата. Карты, помеченные крестом, пусть означают пациентов, получивших лекарство, карты, не помеченные крестом, — пациентов, получивших «плацебо», или «пустышку», — вещество, не оказывающее никакого действия на организм, красные карты — пациентов, состояние которых улучшилось от приема лекарства, черные — пациентов, состояние которых не улучшилось от приема лекарства. При анализе действия лекарства на каждую группу пациентов в отдельности мы пришли бы к заключению, что лекарство более благоприятно сказывается на состоянии пациента, чем «плацебо». При анализе действия того же лекарства на объединенную группу вывод был бы прямо противоположным: прием «плацебо» оказывает более благоприятное действие на состояние пациента, чем лекарство! Этот парадокс показывает, как трудно придумать схему испытаний, которая давала бы надежные статистические результаты.

Примером того же парадокса может служить подлинное происшествие, приключившееся в 1978 г. при анализе статистических данных о результатах приема в Калифорнийский университет в Беркли.

Исследователей интересовало, не отдается ли при вступительных экзаменах предпочтение юношам перед девушками. В тот год в университет было зачислено около 44 % абитуриентов и около 33 % абитуриенток.

Поскольку юноши и девушки были подготовлены примерно одинаково, казалось, что приемная комиссия не отличалась беспристрастием и отдавала явное предпочтение юношам. Но при попытке установить, на каком из факультетов девушки подвергались дискриминации, выяснилось, что на каждом из факультетов университета процент принятых абитуриенток был выше, чем процент принятых абитуриентов! Как это объяснить? Парадокс возник из-за того, что гораздо больший процент абитуриенток подали заявление на более трудные факультеты, где отсев был значительно больше. Если же сравнить абитуриентов и абитуриенток, поступавших на один и тот же факультет, то доля абитуриенток, успешно сдавших вступительные экзамены и зачисленных в университет, оказывалась выше доли абитуриентов. «Дискриминация» юношей превратилась в «дискриминацию» девушек, когда все данные по факультетам свели в единые данные по всему университету. Был ли Калифорнийский университет реабилитирован после того, как парадокс разрешился? По-видимому, был. А что, если какой-то женоненавистник придумал более трудные вопросы и задачи на вступительных экзаменах именно на те факультеты, на которые особенно охотно подавали заявления абитуриентки?


Вороны Гемпеля


>Этот знаменитый парадокс о черных воронах показывает, что мисс Лоунлихартс далеко не одинока и находится в хорошей компании.

>Решить его пока оказалось не по силам даже лучшим современным логикам.



>Если орнитологи наблюдали лишь трех-четырех черных ворон, то их вывод о том, что «все вороны черные», мягко говоря, не слишком подкреплен фактами. Иное дело, если орнитологи (и не только орнитологи) наблюдали миллионы черных ворон. В этом случае вывод о том, что все вороны черные, основательно подкреплен фактами.



>Ворона. Кар, кар! Я не черная ворона. Пока меня никто не видел, никто не знает, что утверждение «Все вороны черные» ложно.



>А как насчет желтой гусеницы? Можно ли считать, что она подтверждает утверждение «Все вороны черные»?



>Чтобы ответить на этот вопрос, сформулируем исходное утверждение в иной, но логически эквивалентной форме; «Все, что не черно, неворона».


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.