А ну-ка, догадайся! - [41]
Нет, нельзя. Отмеченный параллелизм в росте численности населения и аистов обусловлен тем, что с увеличением числа зданий в городе появляется больше мест, пригодных для гнездовий аиста.
5. Как показало недавно проведенное исследование, большинство математиков были старшими сыновьями. Означает ли это, что существует большая вероятность обнаружить математические способности у старшего сына, чем у кого-нибудь из младших? Нет, статистика просто отражает тот удивительный факт, что большинство сыновей старшие.
В связи с последним примером вы можете провести несколько интересных опытов. Вспомните знакомых мужского пола. Проверьте, будет ли больше половины из них старшими сыновьями. Повторите тот же эксперимент со знакомыми женского пола. Какая доля из них будет старшими дочерьми?
Проведем мысленный эксперимент. Рассмотрим 100 двухдетных семей. Какая доля мальчиков (девочек) будет старшими сыновьями (дочерями)? (Ответ: 3/4.) Вычислите долю старших сыновей (дочерей) в 100 трехдетных семьях. (Ответ: 7/12.) Вряд ли нужно говорить о том, что в однодетных семьях единственный ребенок всегда старший.
Точная доля старших сыновей или дочерей изменяется в зависимости от числа детей в семьях, но всегда больше 1/2 и в большинстве случаев значительно больше 1/2.
Приведенных примеров достаточно, чтобы побудить вас к самостоятельному поиску других примеров статистических утверждений, которым неправильно приписывается несуществующая причинно-следственная связь. Богатым источником такого рода утверждений служит коммерческая реклама, в особенности передаваемая по телевидению.
>Многие склонны думать, что всякого рода совпадения вызваны действием звезд и другими таинственными силами.
>Предположим, например, что в салоне самолета разговорились два незнакомых прежде пассажира.
>Джим. Так вы из Бостона! Моя добрая знакомая Люси Джонс работает в Бостоне адвокатом.
>Том. Подумать только, как тесен мир! Люси лучшая подруга моей жены!
>Есть ли основания считать подобные совпадения маловероятными?
>Статистики доказали, что таких оснований нет.
Многие очень удивляются, когда при встрече с незнакомым человеком (в особенности вдали от дома) обнаруживают, что у них есть общий знакомый. Группа социологов из Массачусетского технологического института под руководством Итиль де Сола Пул исследовала этот парадокс, который условно можно было бы назвать «Мир тесен». Они обнаружили, что если выбрать наугад двух жителей США, то каждый из них знает в среднем около 1000 людей. Это означает, что они знают друг друга с вероятностью около 1/100000.
Вероятность того, что у них есть общий знакомый, значительно больше и составляет примерно 1/100. Вероятность того, что они связаны между собой (как в диалоге, приведенном в подписи к нижнему рисунку) через цепочку из двух посредников, больше, чем 99/100!
Иначе говоря, если Браун и Смит — два выбранных наугад жителя США, то с вероятностью, почти равной единице, можно утверждать, что Браун знает кого-то, кто знает Смита.
Психолог Стенли Милгрэм подошел к решению парадокса «Мир тесен» с другой стороны: он отобрал наугад группу «отправителей». Каждому из отправителей Милгрэм вручил некий документ с просьбой передать его незнакомому «получателю», живущему в отдаленном штате. Получив документ, отправитель пересылал его по почте тому из своих близких знакомых, кто, по его мнению, с наибольшей вероятностью мог знать получателя. Знакомый в свою очередь пересылал документ своему знакомому и т. д., пока наконец документ не доходил до получателя. Милгрэм обнаружил, что число посредников между отправителем и получателем колебалось от 2 до 10 с медианой, равной 5. (На вопрос о том, сколько посредников понадобится для пересылки документа, люди обычно отвечали, что около 100.)
Исследование Милгрэма показало, сколь тесно связаны между собой люди сетью общих знакомых.
Поэтому нет ничего удивительного в том, что двое людей, впервые видящих друг друга, встретившись далеко от дома, обнаружили общего знакомого. Сеть общих знакомых позволяет объяснить и другие странные на первый взгляд статистические явления, например необычайную скорость, с которой распространяются слухи, сенсационные новости, конфиденциальная информация и анекдоты.
>Эти четверо людей встретились впервые. Разве не удивительно, что по крайней мере двое из них родились под одним знаком зодиака?
Возможно, совпадение покажется вам удивительным, но в действительности оно случается в 4 случаях из 10. Предположим, что каждый из четырех людей мог с равной вероятностью родиться под любым из 12 знаков зодиака. Какова вероятность того, что по крайней мере двое из четырех родились под одним знаком зодиака?
Рассмотрим задачу на модели — специально подготовленной колоде карт. Извлечем из колоды и отложим в сторону четырех королей. В колоде останется по 12 карт каждой из четырех мастей. Каждая масть соответствует одному из четырех людей, каждое значение карты — одному из знаков зодиака.
Извлечем наугад по одной карте каждой масти.
Какова вероятность, что значения по крайней мере двух карт будут совпадать? Найти эту вероятность означает найти вероятность того, что по крайней мере два из четырех незнакомых между собой людей родились под одним знаком зодиака.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.