19 смертных грехов, угрожающих безопасности программ - [5]

Шрифт
Интервал

Мы не станем приводить исчерпывающий список языков, подверженных ошибкам из–за переполнения буфера, скажем лишь, что к их числу относится большинство старых языков.

Как происходит грехопадение

Классическое проявление переполнения буфера – это затирание стека. В откомпилированной программе стек используется для хранения управляющей информации (например, аргументов). Здесь находится также адрес возврата из функции и, поскольку число регистров в процессорах семейства х86 невелико, сюда же перед входом в функцию помещаются регистры для временного хранения. Увы, в стеке же выделяется память для локальных переменных. Иногда их неправильно называют статически распределенными в противоположность динамической памяти, выделенной из кучи. Когда кто–то говорит о переполнении статического буфера, он чаще всего имеет в виду переполнение буфера в стеке. Суть проблемы в том, что если приложение пытается писать за границей массива, распределенного в стеке, то противник получает возможность изменить управляющую информацию. А это уже половина успеха, ведь цель противника – модифицировать управляющие данные по своему усмотрению.

Возникает вопрос: почему мы продолжаем пользоваться столь очевидно опасной системой? Избежать проблемы, по крайней мере частично, можно было бы, перейдя на 64–разрядный процессор Intel Itanium, где адрес возврата хранится в регистре. Но тогда пришлось бы смириться с утратой обратной совместимости, хотя на момент работы над этой книгой представляется, что процессор х64 в конце концов станет популярным.

Можно также спросить, почему мы не переходим на языки, осуществляющие строгий контроль массивов и запрещающие прямую работу с памятью. Дело в том, что для многих приложений производительность высокоуровневых языков недостаточно высока. Возможен компромисс: писать интерфейсные части программ, с которыми взаимодействуют пользователи, на языке высокого уровня, а основную часть кода – на низкоуровневом языке. Другое решение–в полной мере задействовать возможности С++ и пользоваться написанными для него библиотеками для работы со строками и контейнерными классами. Например, в Web–сервере Internet Information Server (IIS) 6.0 обработка всех входных данных переписана с использованием строковых классов; один отважный разработчик даже заявил, что даст отрезать себе мизинец, если в его коде отыщется хотя бы одно переполнение буфера. Пока что мизинец остался при нем, и за два года после выхода этого сервера не было опубликовано ни одного сообщения о проблемах с его безопасностью. Поскольку современные компиляторы умеют работать с шаблонными классами, на С++ теперь можно создавать очень эффективный код.

Но довольно теории, рассмотрим пример.

...

tinclude

void DontDoIhis (char* input)

{

char buf[16];

strcpy(buf, input);

printf("%s\n» , buf);

}

int main(int argc, char* argv[])

{

// мы не проверяем аргументы

// а чего еще ожидать от программы, в которой используется

// функция strcpy?

DontDoThis(argv[l]);

return 0;

}

Откомпилируем эту программу и посмотрим, что произойдет. Для демонстрации автор собрал приложение, включив отладочные символы и отключив контроль стека. Хороший компилятор предпочел бы встроить такую короткую функцию, как DontDoThis, особенно если она вызывается только один раз, поэтому оптимизация также была отключена. Вот как выглядит стек непосредственно перед вызовом strcpy:

...

0x0012FEC0  с8  fe 12 00 .. <– адрес аргумента buf

0x0012FEC4  с4 18 32 00 .2. <– адрес аргумента input

0x0012FEC8  d0 fe 12 00 .. <– начало буфера buf

0x0012FECC  04 80 40 00  .<>@.

0x0012FED0  el 02 3f 4f     .?0

0x0012FED4  66 00 00 00    f… <– конец buf

0x0012FED8  e4 fe 12 00     .. <– содержимое регистра EBP

0x0012FEDC  3f 10 40 00  ?.@. <– адрес возврата

0x0012FEE0  c4 18 32 00    .2. <– адрес аргумента DontDoThis

0x0012FEE4  cO ff 12 00     ..

0x0012FEE8  10 13 40 00  ..@. <– адрес, куда вернется main()

Напомним, что стек растет сверху вниз (от старших адресов к младшим). Этот пример выполнялся на процессоре Intel со схемой адресации «little–endian». Это означает, что младший байт хранится в памяти первым, так что адрес возврата «3f104000» на самом деле означает 0x0040103f.

А теперь посмотрим, что происходит, когда буфер buf переполняется. Сразу вслед за buf находится сохраненное значение регистра EBP (Extended Base Pointer – расширенный указатель на базу). ЕВР содержит указатель кадра стека; при ошибке на одну позицию его значение будет затерто. Если противник сможет получить контроль над областью памяти, начинающейся с адреса 0x0012fe00 (последний байт вследствие ошибки обнулен), то программа перейдет по этому адресу и выполнит помещенный туда противником код.

Если не ограничиваться переполнением на один байт, то следующим будет затерт адрес возврата. Коль скоро противник сумеет получить контроль над этим значением и записать в буфер, адрес которого известен, достаточное число байтов ассемблерного кода, то мы будем иметь классический пример переполнения буфера, допускающего написание эксплойта. Отметим, что ассемблерный код (его обычно называют shell–кодом, потому что чаще всего задача эксплойта – получить доступ к оболочке (shell)) необязательно размещать именно в перезаписываемом буфере. Это типичный случай, но, вообще говоря, код можно внедрить в любое место вашей программы. Не обольщайтесь, полагая, что переполнению подвержен только очень небольшой участок.


Рекомендуем почитать
Графика DirectX в Delphi

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вторая жизнь старых компьютеров

Сейчас во многих школах, институтах и других учебных заведениях можно встретить компьютеры старого парка, уже отслужившие свое как морально, так и физически. На таких компьютерах можно изучать разве что Dos, что далеко от реалий сегодняшнего дня. К тому же у большинства, как правило, жесткий диск уже в нерабочем состоянии. Но и выбросить жалко, а новых никто не дает. Различные спонсоры, меценаты, бывает, подарят компьютер (один) и радуются, как дети. Спасибо, конечно, большое, но проблемы, как вы понимаете, этот компьютер в общем не решает, даже наоборот, усугубляет, работать на старых уже как-то не хочется, теперь просто есть с чем сравнивать.


DirectX 8. Начинаем работу с DirectX Graphics

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.