Квадратура круга

Квадратура круга

ПРЕДИСЛОВИЕ, КОТОРОЕ СЛЕДУЕТ ПРОЧЕСТЬ

Из геометрических задач, поставленных математиками древности, выделяются три, замечательные тем, что они получили чрезвычайно широкую известность даже среди не-математиков. Задачи эти кратко формулируются так:

«Удвоение куба»: построить ребро куба, объем которого вдвое больше объема данного куба.

«Трисекция угла»: разделить данный угол на три равные части.

«Квадратура круга»: построить квадрат, площадь которого равна площади данного круга.

В нашей брошюре подробно рассматривается только третья, самая знаменитая из перечисленных задач — квадратура круга, вошедшая в поговорку. Читатель узнает, почему многовековые усилия решить эту задачу не приводили к успеху и почему нет никакой надежды разрешить ее когда-нибудь в будущем: квадратура круга (как и остальные две задачи нашего перечня) принадлежит к числу неразрешимых задач.

Жанры: Научпоп, Математика, Образовательная литература
Серии: -
Всего страниц: 4
ISBN: -
Год издания: 1941
Формат: Полный

Квадратура круга читать онлайн бесплатно

Шрифт
Интервал




Что в геометрии означает «построить»


Прежде всего следует правильно уяснить себе требование задачи. Обратим внимание на то, что искомый квадрат предлагается «построить». Это означает, что решение должно быть получено в результате пересечения прямых линий между собой, окружностей между собой или прямых с окружностями. Как бы сложно ни было геометрическое построение, оно должно расчленяться на ряд простейших операций двоякого рода.

А именно:


1) проведение прямой линии через два данные точки,


2) проведение окружности (или ее части, т. е. дуги) данным радиусом около данной точки, как центра.


Первый род операций выполняется помощью чертежной линейки; второй — циркулем. Поэтому рассматриваемое требование нередко высказывают в такой форме: задача должна быть решена «циркулем и линейкой», подразумевая, что эти чертежные принадлежности употребляются только указанными сейчас способами; никакое другое употребление линейки и циркуля при решении геометрических задач не допускается. Нельзя, например, пользоваться линейкой с делениями и вообще какими-либо метками, сделанными на линейке. Кроме того, ряд отдельных операций не должен быть бесконечен: построение, состоящее из бесконечного числа элементарных операций, не считается правильным решением задачи на построение.

Таковы требования, которым должно удовлетворять решение задачи о квадратуре круга.

Предпочтение, которое древние геометры при построениях отдавали прямой линии и окружности перед другими линиями, объясняется, по мнению Ньютона, тем, что прямые и окружности легче чертить, нежели все иные линии. Таким образом, условия, выдвинутые казалось бы чистой теорией, на самом деле имеют глубокие практические корни.

Правда и вымысел


Условия, уточняющие требования задачи о квадратуре круга, известны только специалистам-математикам. В широких кругах любителей о них в большинстве случаев даже не подозревают. Преобладающая масса не-математиков приступает к решению этой задачи, понимая ее по-своему, упрощенно.

Чем, однако, объясняется чрезвычайная популярность задачи о квадратуре круга среди не-математиков и их настойчивые попытки отыскать ее решение?

Причиной является прежде всего кажущаяся простота содержания задачи. Даже не изучавшие геометрию знают, что такое квадрат и круг. Каждому представляется также известным, что надо разуметь под площадью фигуры. Отсюда возникает уверенность, что задача о квадратуре круга под силу и не присяжному математику. А то, что в продолжении ряда веков ее не могли разрешить подлинные математики, только подзадоривало самонадеянных искателей славы.

Но не одно честолюбие побуждало профанов браться за эту задачу. С древних времен сложилось ложное убеждение, будто квадратура круга является ключом ко многим тайнам природы и что ее разрешение должно повлечь за собой ряд новых открытий. Кроме того, распространен был слух, будто английский парламент и правительство Голландии, назначившие премию за лучший способ определения географической долготы на море, обещали крупную награду также и за разрешение квадратуры круга. Верили почему-то в тесную связь обеих задач.

Ложные представления, связанные с квадратурой круга, способствовали широкой известности этой задачи и придали ей чрезвычайную заманчивость в глазах людей, недостаточно сведущих в математике. В этом отношении с нею могут сравниться лишь такие проблемы, как составление «жизненного эликсира», отыскание «философского камня»[1] или изобретение «вечного двигателя».

Число воображаемых решений квадратуры круга и других неразрешимых задач было встарину настолько велико, что Парижская академия наук еще в 1775 г. принуждена была выступить со следующим заявлением:

«Академия постановила не рассматривать отныне представляемых ей решений задач удвоения куба, трисекции угла, квадратуры круга, а также машин, долженствующих осуществить вечное движение».

Двухтысячелетние поиски решения


Великий математик древнего мира Архимед (III век до нашей эры) первый поставил задачу о квадратуре круга на научную основу. В сочинении «Измерение круга» он доказал, что круг равновелик прямоугольному треугольнику, один катет которого есть радиус круга, а другой — выпрямленная окружность (рис. 2). Способ выпрямления окружности указан Архимедом в том же сочинении: длина окружности меньше 3>1/>7 диаметра, но больше, чем 3>10/>71 диаметра. Другими словами, Архимед доказал, что отношение длины окружности к ее диаметру, т. е. число, которое принято теперь обозначать греческой буквой π (ПИ), заключается между 3>10/>71 и 3>1/>7. Высший предел, 3>1/>7, настолько близок к истинной величине, что им часто пользуются на практике еще в наши дни; его называют «Архимедовым числом».

Вытекающий из сказанного способ приближенного решения задачи о квадратуре круга весьма несложен. Построив прямоугольный треугольник с катетами R и 

(здесь R — радиус круга), превращают его в равновеликий квадрат. Построение стороны х этого квадрата можно выполнить различными способами. Способ, показанный на рис. 3, основан на том, что перпендикуляр, опущенный из точки полуокружности на ее диаметр, есть среднепропорциональная между отрезками диаметра.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Чертова свадьба! или Месть по-ведьмински

Для кого-то жизнь - это ровная полноводная река, для другого - скудный грязный ручеек. А иные попадают в стремительное горное течение, изобилующее порогами и водопадами, и кажется, что никогда уже не удастся из него выбраться. А если повезет, в конце непременно будет поджидать скалистый уступ или быстрая, неумолимая смерть. И в этом течении так легко потерять ориентиры, забыв о человечности, о тех людях, кому небезразличен... Но если держаться вместе, кто знает, может и удастся выплыть к светлым берегам?


Современная финская новелла

В книгу входят произведения, появившиеся в основном после 1970 г. и рассказывающие о жизни современной Финляндии, трудовых буднях ее народа, его мечте о мире.Среди авторов рассказов — Мартти Ларни, Эльви Синерво, Райя Оранен, Юхани Пелтонен, Ауликки Оксанен, Мартти Росси, Вейо Мери, М.-Л. Миккола и другие. Большинство новелл на русский язык переводится впервые.


Не знаешь, что найдешь...

АннотацияПозади отчий дом, ставший чужим. Впереди пугающая неизвестность. Так думала Кэсси, пускаясь в неблизкий путь на смотрины к своему жениху, найденному по брачному объявлению. Дома остались малолетний сынишка и пятеро младших братьев, которых ее непутевый отец и молодая мачеха собираются отдать в приют. Вся надежда на то, что заочный жених не только возьмет Кэсси в жены, но и предоставит кров шестерым сорванцам. Правда, сам он о таком «довеске» еще не знает...


Девочки

В повести рассказывается о скрытой ревности и конкуренции, о девчоночьей вредности даже по отношению к лучшей подруге, о проблемах внешности и подростковых «комплексах». А также — о первом вечере старшеклассников, о расставании с детством, о поэзии и любви.


Дажьбог - прародитель славян

У наших далеких предков уже на самой заре истории был миф, и миф этот был столь всеобъемлющ, что пронизал почти все стороны материальной и духовной жизни и в конечном итоге сформировал уникальное мировоззрение. Миф этот был о Дажьбоге и о происхождении от него великого племени славян. Наши предки твердо знали, как и для чего рождены на Земле, каковы их истинная сущность и подлинное предназначение. Миф давал им целостную систему мирочувствования и указывал направление движения, наполнял жизнь высшим смыслом.


Учение Чарлза Дарвина о развитии живой природы

В брошюре рассказывается об основных положениях теории Ч. Дарвина о происхождении видов живой природы путем естественного отбора.


Падение кошки и другие зоосенсации

Эдуар Лоне, известный французский журналист и популяризатор науки, рассказывает в своей увлекательной, полной доброго юмора и тонких параллелей, книге о некоторых недавних открытиях зоологов. Лоне приглашает читателя совершить экскурсию в удивительный мир, где живут слоны-пьяницы, жирафы-гипертоники, истинно британские блохи, свободолюбивые мухи и другие не менее симпатичные существа, порой очень похожие на людей.


Вам жить в XXI веке

Открывают сборник статьи крупных ученых нашей страны. Они знакомят читателей с прогнозами и свершениями и области науки и техники — готовят сегодняшних школьников к будущей работе и условиях научно-технического прогресса. Узнают читатели и о новых технологиях, созданных советскими специалистами и специалистами стран социалистического содружества. В книге также помещены очерки о выдающихся ученых прошлого — тех, кто заложил фундамент современной науки.Составитель Г.А.ЮРКИНАВ сборнике использованы материалы из центральных газет и журналов.


Берестяная почта столетий

Книга посвящена истории открытия и изучения новгородских грамот на бересте. Книга о берестяных грамотах – это рассказ о важнейших процессах истории Новгорода, сделавших этот город одним из важнейших центров экономики, политики и культуры средневековой Европы.


Слова на карте

Эта книга почти топонимический атлас мира, который у Айзека Азимова получился сборником занимательных историй. Вы узнаете, почему Австралия несет в себе слово юг, а Австрия — восток и как за названием Нью-Джерси мог скрыться английский король, а за именем Филадельфия — египетский фараон Множество мест на земле было названо в честь богов, святых, королей и президентов, политиков, воинов и важных событий. Прошлое откроет для вас чудеса и магию языка далеких эпох.