Золотое сечение. Математический язык красоты - [4]

Шрифт
Интервал




Этот иероглиф майя первого века до нашей эры — первое документальное подтверждение использования числа ноль. Однако цивилизация майя использовала непозиционную систему счисления: единица обозначалась точкой, число 5 — линией, число 14 — четырьмя точками и двумя линиями и так далее.


Первые числа, которые использовали люди, называются натуральными (1, 2, 3, 4, 5…). Согласно учению пифагорейцев, самой влиятельной теории в древнегреческой математике, имеющей основополагающее значение и для современной науки, с помощью натуральных чисел можно описать окружающий нас мир. Натуральные числа (а также ноль и целые отрицательные числа) и построенные с их помощью дроби математики называют рациональными числами. Этот термин становится более понятен, если мы заметим, что слово «рациональный» имеет тот же корень, что и слово «ration», которое, в свою очередь, связано со словом «ratio» («отношение»), а именно соотношение двух величин. Число называется рациональным, поскольку является результатом отношения, деления, а не потому, что оно «разумное» — в другом смысле слова «рациональный».

Пифагор и его последователи более 20 веков назад знали, что корень из двух (√2) не является рациональным числом. Это число нельзя выразить в виде отношения двух натуральных чисел — как результат деления одного числа на другое. Пифагорейцы думали, что числа являются священными сущностями. Они верили, что все в мире может быть измерено, что все имеет численную природу. Поэтому идея невыразимого числа противоречила самой основе их философии.

Числа, которые не являются рациональными, называются иррациональными. Это довольно обманчивое название просто означает, что такие числа не могут быть выражены в виде отношения двух натуральных чисел. Представим только замешательство пифагорейцев, когда они обнаружили действительно иррациональные величины, которые невозможно точно измерить, например, обычную диагональ в квадрате со стороной, равной единице (это и будет число √2). Неудивительно, что они попытались утаить такое неприятное открытие.

Существует много математических отличий между рациональными и иррациональными числами, но, пожалуй, одно из самых замечательных и интуитивно понятных — так называемая «музыкальность». Это хотя и не строго математическое отличие имеет математическую причину, а именно: различие в десятичной записи рациональных и иррациональных чисел.

Десятичные знаки рациональных чисел образуют повторяющуюся последовательность, называемую «периодической», в то время как десятичные знаки иррациональных чисел не повторяются ни с какой закономерностью, они появляются один за другим в непредсказуемом порядке. Однако если каждой цифре мы поставим в соответствие ноту и «сыграем» десятичные знаки рационального числа, мы услышим повторяющуюся мелодию, похожую на мотив песни. С другой стороны, музыка иррациональных чисел представляет собой неприятную какофонию.


ИРРАЦИОНАЛЬНОСТЬ ЧИСЛА √2

Допустим, что число √2 рационально. Это значит, что √2 можно выразить в виде дроби:

√2 = p/q

где р — целое, a q — натуральное число, причем р и q не имеют общих делителей. Избавляясь от знаменателя и возводя в квадрат, получим:

2q>2= р>2.

Отсюда следует, что р должно быть четным числом.

Тогда мы можем написать р = 2∙r и

2q>2= = 4r>2.

Разделив обе части на 2, получим:

q>2 = 2r>2,

откуда следует, что q также должно быть четным. Так как оба числа р и q четные, они имеют общий делитель, равный 2. Какой бы подход мы ни использовали, в результате всегда получается противоречие. Таким образом, первоначальное предположение, что число √2 рационально, неверно.


Определение золотого сечения

Золотое сечение является иррациональным числом, которое мы будем обозначать греческой буквой фи (Ф). Оно было открыто древними греками, и его документированная история начинается с одной из самых известных и много раз переиздаваемых книг всех времен и народов «Начал» Евклида, написанной около 300 г. до н. э.

Шедевр Евклида является первым научным бестселлером в истории. Ученый преследовал две цели, когда писал эту работу. С одной стороны, он хотел собрать все математические результаты того времени и составить энциклопедию, которая служила бы учебником. С другой стороны, он хотел разработать определенную методологию доказательств и построить новую математическую теорию, основанную на аксиомах (утверждениях, принимаемых без доказательств) и законах дедукции.

Успех «Начал» бесспорен, эта книга оказала значительное влияние на развитие всех областей математики. Известный математик и педагог XX века Лусио Ломбардо Радис писал: «После Библии и работ Ленина [«Начала»] является самой публикуемой и переводимой книгой. Еще несколько десятилетий назад она служила учебником геометрии для средней школы». Поскольку математика является обязательным предметом всех систем образования во всех странах мира, каждый человек на Земле, ходивший в школу, так или иначе познакомился с «Началами» через тексты учебников математики.


ЕВКЛИД АЛЕКСАНДРИЙСКИЙ (325–265 гг. до н. э.)

Несмотря на видное место Евклида в истории математики, о его жизни известно мало. Более того, его часто путают с другим Евклидом (из Мегары). Евклид Александрийский родился около 325 г. до н. э. и, по имеющимся данным, уже в возрасте 25 лет стал директором математического отдела музея Александрии. Это заведение было «прибежищем муз» и было больше похоже на библиотеку и колледж, чем на достопримечательность. Действительно, это был крупный научный центр в средиземноморском мире, где хранились копии всех основных научных трудов того времени. Считается, что Евклид получил образование в Афинах, и его работы признавались исключительными даже до его смерти в 265 г. до н. э. Его влияние не ослабевало на протяжении столетий, и даже коллектив математиков 1930-х гг., известный как Бурбаки, пропагандируя радикальные изменения в математике, выбрал наиболее привлекающий внимание лозунг «Долой Евклида!»


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.