Пожалуй, если бы детей учили говорить по той же самой методе, по которой обучают математике, то мало кто сумел бы произнести пару связных фраз. Когда малыш, коверкая слова, пытается составить какое-то осмысленное предложение, его мама и папа обычно восторгаются, а не кричат: «Неправильно!» всякий раз, как только он делает ошибку. На занятиях же по математике дети с самого начала — с первых промахов — подвергаются резкой критике. Школьная математика допускает лишь точное решение задач. Так оказывается ненужной, например, присущая детям от рождения способность интуитивно считать — умение приблизительно оценивать количество тех или иных предметов. А ведь этот прирожденный талант, если бы учителя стремились его развивать в детях, помог бы им освоиться в мире чисел и функций.
На самом деле в математической науке, как и в любых исследованиях, никто поначалу не знает, каким будет результат. Истину находят методом проб и ошибок. Вот и ученики не должны бояться собственных неудач. Им надо научиться преодолевать ошибки, побеждать свои слабости, чтобы наконец отыскать правильное решение. Школьников надо приучать сомневаться в достигнутом результате, а не запугивать тем, что они не соответствуют идеалу — решают задачу неточно.
«Все дело в том, что в основе системы преподавания школьной математики лежит превратное представление о ней. Неудивительно, что к окончанию курса ученики даже не догадываются о том, что же такое математика. Для них этот предмет вырождается в бессмысленный набор формул, в которые надо только подставлять циферки вместо букв, и все как-нибудь получится. Математические понятия остаются для них чужды, хотя им легко найти созвучия в собственном опыте, — отмечает немецкий популяризатор математики Альбрехт Бойтельшпахер. — Так, если ученик поймет, что такое симметрия, он будет ходить и видеть вокруг себя примеры симметрии. Он откроет для себя одну из тайн природы — в мире царит симметрия! То же касается бесконечности. Для ребенка, который понял, что такое бесконечность, она начинается даже в полосках на спине зебры. Практически всюду мы можем открыть какие-то математические структуры и образы. Пусть это прозвучит патетично, но математика дает человеку возможность постичь красоту и совершенство мироздания. Некоторые ученые даже руководствуются этим в своей работе, отдавая предпочтение более красивым решениям».
Повзрослев, люди все так же отказываются понимать математику. Почему в обществе царит предубежденное отношение к ней? Почему многие считают математику, питающую корни других научных дисциплин, настолько сухой и безжизненной теорией, что боятся лишний раз прикоснуться к ней и забывают ее, едва была закрыта последняя страница школьного учебника? Случайно ли она кажется многим чем-то вроде «башни из слоновой кости», в которой укрылись посвященные, а остальным вход туда недоступен?
Очевидно, математикам недостает умения общаться с другими людьми. Они не только убеждены в том, что их наука непонятна посторонним, но и, по чьему-то едкому замечанию, «даже уверовали в то, что их собственные коллеги перестали разбираться в ней». В этой «точнейшей из наук» стала чем-то вроде непреложного закона следующая прописная истина (или прописное заблуждение?): «Если ученый стремится к популярности, значит, у него нет сил на «настоящую» науку». Остается лишь разводить руками: в наши дни издаются десятки журналов, выходят сотни книг, снимается множество телевизионных передач, посвященных астрономии, физике, другим естественным наукам, и почти никто из серьезных ученых, представляющих эти научные направления, не считает зазорным выступать в этих изданиях или сниматься в подобных передачах. Об открытиях, сделанных биологами или медиками, на следующий день можно прочитать в газете. А вот о том, что нового в мире математики, не узнаешь почти никогда. Мало кто слышал, например, что в середине 1990-х годов профессор Принстонского университета Эндрю Уайлс доказал знаменитую теорему Ферма. Почему же математики так упорно отстаивают свое право публично молчать?
«Разумеется, другим ученым легче общаться с публикой, и это коренится в самой природе математики, — пишет британский математик Марианна Фрайбергер. — Эта наука абстрактна. Она имеет дело не с какими-то конкретными вещами вроде иероглифов, динозавров или даже загадок происхождения Вселенной, а с формами и структурами. Объяснять на словах все эти структуры, формы, идеи действительно тяжело, а потому математики изобрели свой особый язык, состоящий из символов. И перевести эти символы обратно в слова, понятные всем, — задача не из легких».
Кроме того, за долгие годы в кругу математиков сложился свой «этический кодекс», побуждающий многих сторониться практики ради чистой науки и предпочитать абстрактные истины горьким плодам прогресса. Еще в 1940 году знаменитый английский математик Годфри Харди насмешливо писал в пику ученым, представлявшим другие дисциплины: «В наше время говорят, что наука полезна, если она способствует дальнейшему нарастанию неравенства в распределении разного рода благ или содействует уничтожению человеческой жизни... Математика же далека от нужд войны. Еще никому не довелось додуматься, как можно было бы использовать теорию чисел в военных целях». (Впрочем, через пару лет как раз его коллега, Джон фон Нейман, средствами математики докажет, что взрывной способ детонации атомной бомбы возможен.)