Знание-сила, 2008 № 07 (973) - [10]

Шрифт
Интервал

Нанотрубки отличаются необычными свойствами


...алмаз, графит, фуллерены, нанотрубки...

В 1991 году физик японского концерна NEC Сумио Иидзима, проводя эксперименты, по чистой случайности открыл углеродные нанотрубки, или нанотубы (англ. «nanotube») — длинные, узкие молекулы цилиндрической формы. Длина их достигала нескольких микронов и даже миллиметров, а ширина — всего одного нанометра.

Итак, нанотрубки — это еще одна структурная форма углерода, наряду с алмазом, графитом и фуллеренами (см. «З—С», 10/06). Они отличаются рядом необычных свойств, благодаря которым их можно использовать для монтажа микросхем, создания дисплеев или миниатюрных машин. Так, они великолепно проводят и тепло, и электрический ток — лучше, чем, например, медь. Кроме того, они очень прочны. Их предел прочности на разрыв выше, чем у любого другого материала; они в сотни раз прочнее, чем сталь. С появлением этого необычного материала ученые всерьез задумались о такой фантастической идее, как космический лифт (см. «З—С», 4/07).

Атомы углерода в нанотрубках соединены в виде шестиугольников, и в зависимости от их расположения эти трубки могут обладать свойствами изолятора, полупроводника или такого же хорошего — нет, лучше! — проводника, как медь. На их основе можно изготавливать компьютерные микросхемы. Так, если кремниевые транзисторы содержат несколько миллионов атомов, то углеродные нанотрубки — всего несколько сотен. Они гораздо меньше традиционных схемных элементов и значительно дешевле их.

Проблема же в том, что при изготовлении нанотрубок мы не получаем, так сказать, «стандартных, унифицированных деталей» — образуется россыпь разносортных трубок, обладающих самыми разными электрическими свойствами. Однако этот «клубок» можно распутать. Так, Марк Велланд из Кембриджского университета, нагревая вместе с никелем колонны из фуллеренов — молекул в виде футбольного мяча, состоящих из 60 атомов углерода, — получил нанотрубки, обладавшие магнитными

свойствами. Оказавшись в магнитном поле, они располагались строго параллельно друг другу. Так нанотрубки образовали своеобразные кристаллы, представлявшие собой пучок углеродных трубок — любая из них обладала схожими свойствами.

Исследователи из Техасского университета разработали метод изготовления очень легких, прозрачных пленок, содержащих нанотрубки. Стоит пропустить по ним электрический ток, как они начинают светиться поляризованным светом. Нанотрубки можно использовать и для подсветки плоских телевизионных экранов.

Из них изготавливают также искусственные мышцы. Если изменить величину поданного напряжения всего на несколько вольт, нанотрубки растянутся или сожмутся.

При создании жестских дисков используются наноэффекты

«Тысяченожка» снабжена тысячами тончайших игл-перфораторов


«Тысяченожка» стирает сто тысяч раз

Мы живем в информационном обществе. С появлением ноутбуков стало возможным проводить презентации и пресс-конференции в любой точке мира. Всюду доступен Интернет. Объемы информации, перекачиваемые по глобальным сетям, стремительно растут. Непрестанно меняется цифровая техника. Новейшие модели мобильных телефонов или видеокамер по объему памяти превосходят прежние модели ПК.

Все это произошло благодаря миниатюризации электроники. Если первая компьютерная микросхема, разработанная фирмой Intel в 1971 году, содержала 2300 транзисторов, то сейчас на схемах новейшего поколения могут разместиться многие сотни миллионов элементов. Величина самих микросхем при этом почти не изменилась, а вот транзисторы и другие схемные элементы невероятно уменьшились в размерах.

Еще в 1964 году эту тенденцию предсказал основатель компании Intel Гордон Мур. Согласно названному его именем «закону Мура», количество транзисторов, размещенных на микросхеме, удваивается раз в полтора года. На протяжении четырех десятилетий этот закон неизменно выполнялся — благодаря изощренным изобретениям, позволявшим вновь и вновь уменьшать размеры деталей. Десятки слоев, содержащих те же транзисторы и конденсаторы, располагались один над другим. Достигалось это путем термовакуумного напыления, экспонирования, травления.

Все это время главным материалом микроэлектроники оставался кремний. Размеры схемных элементов, изготавливаемых из него, давно уже исчисляются в нанометрах, хотя они и получены традиционным литографическим способом. Например, длина транзисторов сейчас достигает 65 нанометров, а, по прогнозам специалистов, к 2015 году уменьшится до 22 нанометров.

Это достижение будет означать одновременно и «крах надежд»: ведь добиться дальнейшего уменьшения микросхем, используя современные технологии и материалы, невозможно. Время кремниевой электроники близится к концу. Элементы микросхемы станут настолько малы, что их надежной работе помешают квантовые феномены — прежде всего туннельный эффект. Электроны поведут себя как им заблагорассудится. Любые слои изоляции окажутся бесполезны — электроны будут перемахивать через них с легкостью мальчишек, перепрыгивающих барьеры.

Итак, законы квантовой физики ставят предел использованию традиционных полупроводниковых элементов, да и изготавливать их традиционным способом будет уже нельзя. Выручить может феномен, хорошо известный в квантовом мире. Он называется «самоорганизацией». Молекулы и атомы могут сами образовывать различные структуры — достаточно подать им сигнал — например, поместить хаотическое скопление атомов в электрическое или магнитное поле. И тогда они быстро сгруппируются, превращаясь в миллиарды элементов, которые можно использовать как транзисторы или запоминающие устройства. Впрочем, пока еще ученые недостаточно понимают процессы, ведущие к самоорганизации, а потому не могут ими управлять.


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.