Знание-сила, 2007 № 11 (965) - [2]

Шрифт
Интервал

Ну, а мы станем для этих микробов (пока только для них) тем же, чем Господь Бог древних мифов для людей — станем их Творцами, породим их, правда, не по образу и подобию своему, а по своему тонкому расчету. (И когда-нибудь, шутят ученые, миллиарды лет спустя, разумные потомки данных микробов будут ломать голову над тем, как зародилась жизнь и не сотворил ли ее Бог или какой-нибудь «разумный творец».)

В отдельных экспериментах биологи уподобляются инженерам, взявшимся проектировать автомобиль, в котором были бы принципиально иными не только руль или колеса, но даже любые винты. Например, Джек Шостак из Медицинского института Говарда Хьюза попытался вернуться к истокам и воспроизвести в пробирке тот миг начала жизни, когда среди неодушевленной материи возник первый живой организм, случайный конгломерат органических молекул. Экспериментируя с простыми жирными кислотами, образующими в воде пену, он создал примитивные искусственные клетки — «мембранные пузырьки» (везикулы), содержащие молекулы рибонуклеиновых кислот (РНК). Эти пузырьки спонтанно увеличивались в размерах, всасывая оказавшиеся рядом с ними другие пузырьки — «поедая» их. В этом причудливом сообществе шла настоящая борьба за существование. Иногда при копировании РНК происходили случайные сбои, вследствие чего молекулы РНК в какой—нибудь клетке начинали размножаться быстрее и количество их росло, а значит, везикула быстрее других росла и поглощала соседей. Так среди этих квазиживых существ наблюдалась эволюция буквально в дарвиновском смысле этого слова.

Если из протоклеток, созданных Шостаком, когда—нибудь возникнут подлинные, пусть и очень примитивные, клетки, которые будут и далее размножаться и развиваться, они станут первыми на нашей планете живыми организмами, с коими у нас, людей, не будет никаких общих предков. И от этой мысли может закружиться голова у самых трезвых исследователей биоты. До сих пор мы лишь мечтали отыскать не родственные нам живые организмы где-нибудь на других планетах — в марсианском грунте, в водах Энцелада или Европы (имеется в виду спутник Юпитера. — А.В.).

Простое «соперничество молекул» в пробирке заставляет думать о том, что жизнь имманентна нашей Вселенной; ее появление в той или иной части космоса неизбежно. Появление, соперничество, естественный отбор, случайные мутации, дающие преимущество... Эти законы торжествуют и на самых дальних планетах — подобно тому, как в масштабах этих планет действуют и законы механики Ньютона, и правила геометрии Евклида.

Другие исследователи упрощают задачу, то есть берут готовую форму — бактерию известного образца и, удалив ее геном, заново конструируют его, избавляясь от всех генов, без которых бактерия может обойтись. Этот минимум подразумевает способность микроба к размножению и мутации; он также должен обеспечить нормальное протекание процессов обмена веществ. Все остальные функции биотехнологи именуют «балластом», а потому можно обойтись без генов, отвечающих за них.

Судя по всему, Господь Бог был маньеристом, даже творя микробов, — их организмы отягощены, на наш взгляд, избыточной сложностью. «В природе организмам непременно требуются какие-то специальные гены, чтобы выдерживать, например, жару или холод. Лабораторному организму они не нужны. Он обойдется минимумом генов, ведь он не должен ни к чему приспосабливаться», — сказал в одном из интервью американский исследователь Крейг Вентер.


Микробы «нового поколения», создаваемые в лабораторных условиях, отличаются простотой структуры. Они будут состоять из минимально необходимого числа генов и отдельных дополнительных генов, которые заставят эти организмы трудиться на нас. Превратить живые организмы в простые, программируемые биосхемы, наподобие компьютерных микросхем, — вот задача для нового поколения биологов.

Именно этой задачей руководствовался Крейг Вентер, прославившийся семь лет назад расшифровкой (секвенированием) человеческого генома. Вместе с нобелевским лауреатом по медицине Гамилтоном Смитом он в течение нескольких лет выяснял, какие именно гены нужны бактерии Mycoplasma genitalium, у которой всего 515 генов — меньше, чем у любого другого существа на нашей планете. Более сотни генов оказались «лишними». Искусственную бактерию произвели путем удаления из микоплазма гениталиум ее генетического материала и введения новых генов, созданных химическими методами.

В «улучшенный» геном микоплазмы можно безбоязненно вводить гены, отвечающие за функции, которые не были прежде ей присущи. Можно, например, заставить этот микроб вырабатывать дешевый водород или этанол — очень перспективные энергоносители, причиняющие минимальный ущерб окружающей среде.

31 мая этого года Институт Крейга Вентера подал в патентное ведомство США заявку на патент искусственной бактерии, получившей название Mycoplasma laboratorium. Данная работа стала важной вехой в становлении синтетической биологии. Подача же патента — это попытка перейти к коммерческому использованию ее достижений. «Если мы создадим бактерию, вырабатывающую новый вид топлива, это будет первая бактерия на миллиарды долларов», — без обиняков высказался Крейг Вентер, обещавший добиться таких успехов в синтетической биологии, что нефть со временем будет не нужна.


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.