В последние годы ученые не раз пытались понять, есть ли дополнительные условия, при которых путешествия по таким туннелям могут стать реальностью. Пусть когда-нибудь. Пусть через тысячи тысяч лет.
• По расчетам Сергея Красникова, червоточина может сама вырабатывать экзотическое вещество с отрицательной массой, "причем в таком количестве, что ее хватит для космических путешествий".
• В 2005 году английский физик Крис Фьюстер и его американский коллега Томас Роман показали, что червоточина будет вполне стабильна и человек может совершить по ней путешествие без опаски, если только геометрия ее стенок будет выдержана с точностью порядка десяти в шестидесятой степени. Конечно, сейчас это немыслимо, но надежду не убедишь в плохом!
• В 2002 году бразильский ученый Жозе Мартинш Салим рассчитал, что можно обойтись и без отрицательной энергии. В таком случае для стабилизации туннеля понадобятся магнитные монополи, — гипотетические частицы, обладающие одним магнитным полюсом — магнитным зарядом, аналогичным электрическому. Предполагается, что такие частицы возникли сразу после Большого Взрыва. Монополи оказывают отрицательное давление на червоточину, распирают ее стены, не дают им сомкнуться — и все за счет одного лишь магнитного поля.
• В том же году физик Сэан Хэйуорд, работающий в одном из южнокорейских университетов, и его японский коллега Хисааки Синкаи разработали компьютерную модель, которая свидетельствует о родстве черных дыр и космических червоточин. В их модели, стоило стенкам туннеля сомкнуться, как на его месте уже зияла черная дыра. Если же на экране компьютера прямо к черной дыре с двух противоположных сторон подводили отрицательную энергию, то она вмиг вытягивалась в туннель, зазывавший отправиться в неведомую даль...
• По мнению Стивена Хоукинга и некоторых других ученых, подобные червоточины — только крохотных размеров — регулярно возникают в микрокосмосе по причине квантовых эффектов. Возникают и исчезают — этакая рябь в квантовой пене. Но когда-нибудь и эта мельчайшая рябь может вырасти в громадную волну. Расчеты показывают, что с помощью механизма "инфляции" — благодаря нему Вселенная сразу после Большого Взрыва расширялась со сверхсветовой скоростью — можно увеличить протяженность крохотных квантовых туннелей до поистине космических масштабов. Вот только как остановить их рост, как прекратить космическую инфляцию, ученые пока не берутся сказать.
В стороне от скоростных космических дорог
Порой экзерсисы физиков-теоретиков кажутся настоящим образчиком схоластики. Сколько копий сломано вокруг возможного факта существования во Вселенной червоточин! И ради чего? Пересчитана вся отрицательная наличная энергия, собран комплект монополей, выстроена даже модель неуправляемого — катастрофического, инфляционного — строительства космических дорог. Как же все это далеко от насущной жизни — даже от проблем фундаментальной физики!
Однако сами исследователи так не считают. "Изучение червоточин, — подчеркивает Сэан Хейуорд, — расширяет наше понимание силы гравитации, заставляет нас прибегнуть к альтернативным идеям гравитации, например, к моделям бран, используемым в теории струн".
Наука полна чудес. Самые странные гипотезы могут здесь сбыться. Вот уже и черные дыры стали общепризнанной примечательностью космических далей, в то время как к червоточинам, — открыт ли нам вход в них или нет, — по-прежнему относятся, как к чему-то курьезному, как к фантому, рожденному на кончике пера. "А ведь червоточины — это всего лишь черные дыры с отрицательной плотностью энергии", — так прокомментировал свои компьютерные метаморфозы тот же Сэан Хейуорд.
Конечно, большинство его коллег рассуждает так: "Я полагаю, что ни червоточины, ни двигатели, искривляющие пространство, никогда не найдут практического применения, хотя в принципе они могут существовать" (Л. Краус). Однако так ли это важно?
"Мы слишком озабочены земными, практическими вопросами, мы сковываем человеческий дух, — написал однажды Стивен Хоукинг. — Речь же идет о том, чтобы картографировать неведомое в мироздании".
Александр Зайцев
Выйти в прошлое и вернуться!
— Может быть, хочешь узнать кое-что из моего прошлого, которое для тебя станет будущим?
Х.Л. Борхес. Другой
Гедель, Эйнштейн и "Шекспир раздора"
В 1949 году, готовясь отметить семидесятилетие своего друга — Эйнштейна, Гедель задумал сделать ему особый подарок (после 1940 года оба ученых жили в США по соседству). Отталкиваясь от эйнштейновских уравнений общей теории относительности, Гедель вывел формулу которая представляет собой самое полное решение этих сложных уравнений. Он надеялся порадовать друга математическим кунстшткжом, но тот, просмотрев написанное, весел не стал. Эйнштейн был обескуражен подарком и постарался его забыть. Что же рассердило юбиляра?
Во вселенной, воздвигнутой Геделем на фундаменте эйнштейновских уравнений, стали возможны... путешествия во времени. Это "спутывало все карты" ученым, перетряхивало все причины и следствия, порождало неразрешимые парадоксы.
• Например, "парадокс информации". Наши представления о прошлом могли бы изрядно удивить современников тех событий, что так странно порой преломляются в нашем воображении. Прекрасной иллюстрацией может стать история, которую рассказал Энтони Берджесс, — "Муза". Герой повествования — восторженный почитатель Шекспира — очередным рейсом машины времени мчится в прошлое, чтобы засвидетельствовать свое почтение "столпу словесности, светочу мысли, гению всех времен и народов" — и с сочинениями несравненного "потрясателя копий" появляется в гостях у любимого автора. "В гостях у сказки", следовало бы сказать, "в гостях у лучшего мифа всех времен и народов". Ибо путешественник во времени встретил совсем не того Шекспира, о котором мечтал.