Белок-кодируюшие гены активны не все время, иногда одни нужно на время выключать, а другие на время включать. Так происходит во время обычной деятельности клетки, так сказать, текущего метаболизма. Многие белки, осуществляющие важные клеточные процессы, живут недолго, порой считанные минуты, например, регуляторные белки вроде циклина, контролирующего определенный этап клеточного деления. Другие белки нужны только на коротких промежуточных стадиях длинного каскада биохимических реакций. Такие белки создаются по мере потребности, и их производство должно быть прекращено, когда потребность исчезает. Именно для этого и нужно приостанавливать работу соответствующих генов. С другой стороны, те белки, которые выключают "ненужные" энзимы, нужно создать; значит, их гены, наоборот, нужно включить. Все это делается много раз на дню и образует рутинную жизнь генов.
Другой тип управления требуется во время эмбрионального развития, становления взрослого организма. Образование различных органов и тканей — это уникальные события в биографии организма. Здесь ведущую роль играет дифференцировка клеток. Клетки, которым предстоит стать печеночными, начинают отличаться от клеток, которым предстоит стать, скажем, унылым хрящом: у будущих "печеночных" совсем другой набор белков, а значит, и белок-кодируюших генов. Не верится, но еще 50 лет назад биологи не знали, как происходит такая дифференцировка. Потом Конрад Ваддинггон показал, что в каждом виде клеток происходит выключение определенных генов, после чего у каждого такого вида остается свой набор включенных и, соответственно, выключенных генов. Дифференцировавшись таким образом, клетка остается такой всегда, на всю свою жизнь. Клетка каким-то образом "запоминает", какого она вида, при делении она передает свою дифференцировку дочерним клеткам.
Эпигенетический механизм управления генами — своего рода "третий слой", работающий в тесном взаимодействии с первыми двумя. Проникновение в его детали началось в 1993 году (почти одновременно с открытием малых РНК), когда Ениш обнаружил, что подавление некоего энзима, работа которого состоит в метилировании ДНК у мыши, влияет на развитие этой мыши. Затем было выяснено, что присоединение метильной группы к цепи ДНК, или к гистонам (особым белкам, которые плотной "шубой" укутывают хрупкую цепь ДНК), крайне распространено — метилированы огромные участки ДНК. Иными словами, метилирование оказалось еще одним способом подавления экспрессии подлежащих выключению генов.
Но у этого процесса есть антипод: действие ацетиловых групп — они, напротив, разрыхляют гистоновую оболочку и побуждают ген к действию.
Таким образом, метильные и ацетиловые химические группы, сидящие в разных местах хромосом, оказались еще одной формой эпигенетических меток, тоже способных влиять на деятельность генов. Распределение этих групп оказалось, в сущности, формами новой, эпигенетической информации, влияющей через гены на свойства организма.
По мере нарастания этих открытий картина эпигенетических влияний все более усложнялась, что и заставило Томаса Женувейна произнести те грустные слова, с которых мы начали. Хотя было доказано, что действие двух только что названных групп — универсальное явление в эукариотном мире, но последствия этого явления сегодня, в свете новых данных, представляются весьма сложными. Например, опыты показали, что метильные группы способны нейтрализовать ацетиловые и наоборот. И еще, и еще, и еще...
Но, пожалуй, самым главным и самым пока безответным является вопрос: какие факторы диктуют то или иное распределение метиловых и ацетиловых групп? Важность этого вопроса связана с тем, что, по мнению некоторых ученых (например, Эллиса), это распределение представляет собой второй фундаментальный код жизни наряду с генетическим.
Эта гипотеза означает примерно следующее. Генетический код (то есть правила перевода последовательности нуклеотидов в гене в последовательность аминокислот в его белке) управляет организмом с помощью генетической информации, закодированной в ДНК. "Над ним" существует другой, "гистонный код" (то есть пока неизвестные правила перевода того или иного распределения эпигенетических "меток" по гистонам в те или иные изменения активности генов), и этот код, в свою очередь, управляет самими генами и через них организмом с помощью эпигенетической информации, закодированной в этом распределении. Это увлекательная и правдоподобная гипотеза, и сегодня основные усилия эпигенетиков направлены на доказательство существования и "расшифровку" этого "кода". Успех таких усилий будет революцией, по своему значению и последствиям равной той, которую совершили около полувека назад ученые, разгадавшие структуру ДНК и загадку генетического кода.
Нам же остается добавить к этому, что "балет жизни", исполняемый всеми этими взаимозависящими друг от друга участниками, должен и впрямь быть невероятно сложным. И тогда, думается, распутывать все эти сложнейшие взаимодействия охотникам за генами придется еще многие десятилетия. Радует, однако, что первые практические результаты этого поиска уже налицо. Уже начались первые экспериментальные попытки лечения болезней, вызванных нарушениями РНКового и эпигенетического механизмов управления этими генами. Это не только воодушевляет, но одновременно позволяет еще раз убедиться, как важны все эти якобы "отвлеченные" биологические исследования вроде охоты за генами.