Знание-сила, 2003 № 05 (911) - [3]

Шрифт
Интервал

Когда-то в романе «Таинственный остров» Жюль Верн предсказывал, что вода станет «углем будущего», «неисчерпаемым источником тепла и света». В ту пору эти слова казались фантастикой, но в XXI веке им наконец суждено сбыться.

Оптимисты добавляют: «Зачем цепляться за старые технологии? Если бы наши предки не изобретали ничего нового, а жили по старинке, мастеря каменные топоры да уповая на то, что запасов камня хватит надолго, мы бы все еще жили в каменном веке». Эта эпоха, как и многие другие, пройдена нами. Мы спешим навстречу «водородному веку».

Вехи внедрения топливных элементов

1839 — сэр Уильям Гров открывает принцип работы топливного элемента.

1965 — американский космический корабль «Джемини» впервые оснащен топливными элементами.

Середина 1980-х годов — в научных кругах пробуждается интерес к топливным элементам.

1991 — американская фирма ONSI впервые приступила к коммерческому выпуску топливного элемента тепловой мощностью 220 киловатт.

1999 — в США начато использование автобусов, работающих на топливных элементах. В 2003 году подобные автобусы появились на улицах восьми европейских городов: Амстердама; Барселоны, Гамбурга, Лондона, Люксембурга, Стокгольма и Штутгарта.

2001 — начаты испытания мини-электростанций (топливных элементов мощностью до пяти киловатт), рассчитанных на отопление и снабжение электрическим током многоквартирных домов и коттеджей.

2002 — в Германии начат выпуск подводной лодки U31 — первой серийной подлодки, оснащенной топливными элементами.

2006 — планируется закончить испытания миниэлектростанций и приступить к их серийному выпуску. 2010 — ожидается заметный рост интереса к домашним мини-электростанциям.

Адреса в Интернете

Все о топливных элементах: www.initiative-brennstofTzelle.de

Транспорт, работающий на топливных элементах:  www.fuelcelltoday.com

www.daimlerchiysler.de/news/- top/2002/t20204a_jg.htm (автобусы)

www.isi.fhg.de/pi/bz/index.htm (автомобили)

Подводные лодки, оснащенные топливными элементами: www.hdw.de/bau/marine.html


ЧИТАТЕЛЬ СООБЩАЕТ, СПРАШИВАЕТ, СПОРИТ

Игорь Андрианов

Усложнять просто, упрощать — сложно

В интереснейшей заметке М. Арапова «Когда текст обретает смысл» («Знание — сила», 2003, К© 1) отмечается: «Идея «грубой оценки» отсутствует в нашем курсе школьной математики. И органично ввести ее туда — очень сложно».

Затронутый вопрос настолько важен, что хочется продолжить разговор.

Эта проблема актуальна не только для нашей школьной математики и не только математики, и не только школьной. Известный физик Р. Пайерлс настаивал: «В процессе обучения физике мы переоцениваем роль совершенно исключительных проблем, поддающихся точному решению, и не уделяем достаточного внимания гораздо более общей ситуации, в которой используются различные приближенные методы решения. Искусство выбора подходящего приближения, проверки его непротиворечивости и отыскания, по крайней мере интуитивных соображений по поводу удовлетворительности данного приближения, является куда более утонченным, чем искусство нахождения строгого решения уравнения». Так что и в университетских, и в вузовских курсах мы сталкиваемся с такими же проблемами, причем не только в России.

Перед учениками школы встает, на мой взгляд, большая психологическая проблема Действительно, в реальной жизни нет ничего строгого и окончательно известного, с детства нам приходится действовать в условиях неполной информации. Исследования психологов показывают, что наш мозг отдает предпочтение быстрым приближенным алгоритмам, а не точным, но медленным. «Человеческий мозг работает предельно эффективно и экономно. Именно поэтому он совсем не заинтересован в накоплении максимума возможной информации об объекте. У Бонгарда я впервые прочла о том, что принципиальная задача любой узнающей системы — это не получение всей информации об объекте, а наоборот, способность системы выбросить всю несущественную информацию, то есть дать вырожденное описание объекта» (Р. Фрумкина, «Знание — сила», 1996, № 6).

Между тем в школе ничего подобного на уроках математики и физики мы не встречаем. Здесь царствуют законы природы: Ома, Гука, Бойля — Мариотта и т.д. Какова точность этих законов, область их применимости, идеализацией каких реальных процессов они являются — все это остается за кадром.

Эйнштейн высказывался резко: «Чтобы понять физические законы, мы должны усвоить себе раз и навсегда, что все они в какой-то степени приближенные».

Школьник должен сознавать, что в любой физической теории мы работаем с идеальными моделями реальных вещей и процессов. Здесь не место обсуждать конкретные детали, но, поверьте, накопленный прикладными и особенно асимптотическими математиками опыт позволил бы сделать это без особых проблем!

Речь идет — назовем вещи своими именами! — о введении асимптотических понятий уже в школьные курсы физики и математики. Вот это была бы подлинная революция школьного образования, а не бурбакистско- схоластическая «революция» преподавания математики, нанесшая такой вред. Я не идеалист и понимаю, насколько это сложно осуществить с практической точки зрения, особенно сейчас. Попробуй преодолеть многовековую инерцию преподавания и консерватизм учителей, да еще в то время, когда им приходится регулярно голодать, чтобы получить свои жалкие гроши-зарплаты, и преподавать в холодных школах! В этой части я полностью согласен с М. Араповым. И все же я оптимист и надеюсь, что в обозримом будущем ситуация изменится и понятия, позволяющие примирить реальное представление о мире ученика с его школьной обязаловкой, найдут свое место в российской школе.


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.