Еще в 1911 году голландский физик Хейке Камерлинг-Оннес установил, что металлическая ртуть при охлаждении до четырех градусов выше абсолютного нуля полностью перестает оказывать сопротивление проходящему через нее току. В 1913 году он обнаружил подобное поведение у свинца при семи градусах.
Сверхнизкие температуры очень сложно и дорого получать, поэтому с первых же дней ученые стали искать сверхпроводники с более высокими температурами, но дело подвигалось крайне медленно. Лишь в 1954 году удалось перебраться за 18 градусов для соединения Nb>3Sn, а в 1973 подойти к 24 градусам для Nb>3Ge. И только в 1986 году Г. Беднорц и А. Мюллер в исследовательской лаборатории IBM в Цюрихе получили сверхпроводимость при 35 градусах в соединении оксида бария — лантана — меди (кстати, неметалла), и это был прорыв. Действительно высокотемпературный сверхпроводник с критической температурой 80—90 градусов выше абсолютного нуля был найден в начале 1987 года. Авторы открытия ВТСП вскоре стали нобелевскими лауреатами.
Камерлинг-Оннес также довольно быстро был увенчан Нобелевской премией, но вот дождаться теоретического объяснения своего открытия ему было не суждено. Куда девается сопротивление движению электронов, поняли лишь в 1957 физики из университета в Иллинойсе — Дж. Бардин, Л. Купер и Дж. Шриффер (в 1972 году и они получили Нобелевскую премию). Оказывается, при движении через вещество с кристаллической решеткой электроны могут объединяться в пары и тогда двигаться без сопротивления. Теоретики описывают процесс движения такой пары по сверхпроводнику, как движение «фонона» — пакета колебательной энергии.
Но это объединение возможно лишь при сверхнизких температурах и совсем «не работает» при температурах более высоких, а тем более комнатных. Во всяком случае, совершенно непонятно, как «куперовским парам» удается противостоять нагреву. Неужели первооткрывателям ВТСП также несколько десятилетий ждать, когда же ее объяснят? Все-таки события последних лет внушают осторожный оптимизм.
Перипетии «новейшей истории»
Первое предположение о том, что происходит при ВТСП, высказал физик из университета в штате Иллинойс Тони Легетт. Он предложил эксперимент, способный определить, как ведут себя электроны в обычных и высокотемпературных сверхпроводниках одинаково или нет. По его мнению, ключ к проблеме лежал в понятии симметрии. Дело в том, что в обычном сверхпроводнике спаренные электроны обладают симметрией S-волны, иначе говоря — сферической, когда нет выделенного направления. Большинство физиков считают, что и при повышении температуры сохраняется тот же механизм.
Но вот Дуглас Скальпино из Санта-Барбары в Калифорнии предложил в 1989 году радикальную идею. Он обратил внимание на то, что атомы — это крошечные магниты, причем расположенные в строгом порядке кристаллической решетки. У электронов тоже есть магнитный момент. Гипотеза Скальпино состоит в том, что взаимодействие между магнитными моментами может загнать электроны в пары.
Представьте, что прохождение электрона заставляет магнитный момент ближайшего атома перевернуться. Этот переворот повлияет и на соседние с ним атомы, они тоже могут сместить направление магнитного момента. После ухода электрона положение атомов еще некоторое время будет сохраняться и они смогут притянуть к себе другой проходящий электрон. Этот механизм называется «спиновыми флуктуациями», поскольку магнитные моменты у атомов и у электронов возникают благодаря их собственному вращательному моменту — спину, а флуктуации в структуре спинов кристаллической решетки могут привести к возникновению сил спаривания электронов.
Идея стала особенно привлекательной после того, как один из коллег Легетта, Дэвид Пайне, показал в 1992 году, что спиновые флуктуации действительно способны связать электроны в пары и даже противостоять разрушительному воздействию температурного нагрева. Один из важнейших моментов его гипотезы заключается в том, что пары возникают с другой формой симметрии — так называемой D-волной (см. рисунок). Если бы экспериментально удалось доказать, что для высокотемпературной сверхпроводимости реализуется именно D-волновая симметрия электронных пар, то идея получила бы колоссальную поддержку.
Эксперимент достаточно прост. Как и все квантовые частицы, электронные пары обладают волновыми свойствами. В S-волновом сверхпроводнике волна пары везде положительна, а в случае D-волны есть участки, где она отрицательна. Именно эту смену знака волны и планировал заметить Легетт в своем эксперименте. Для этой цели Дональд Гинсберг из университета штата Иллинойс вырастил кристалл высокотемпературного сверхпроводника не толще человеческого волоса, а по бокам его умудрился приладить десяток проводков и соединить их со сверхчувствительным измерителем магнитного поля. Первые же измерения показали, что распространяется D-волна.
Ван Харлиген, руководитель лаборатории, в которой трудятся Легетт и Пайне, говорил: «Эксперимент был предельно прост и нагляден. Некоторые противники нашей гипотезы повторяли его, чтобы доказать, что мы ошибаемся, но их измерения лишь подтверждали нашу правоту».