Западноевропейская наука в средние века: Общие принципы и учение о движении - [114]

Шрифт
Интервал

4.7. Мертонская теорема о среднем градусе скорости

Главным результатом математических вычислений, проводившихся в Мертон-колледже, были формулировка и доказательство фундаментальной кинематической теоремы, которая приравнивает (в отношении пути, пройденного за определенный отрезок времени) равноускоренное движение равномерному, скорость которого равна скорости равноускоренного движения в средний момент времени последнего. В современной символической записи мертонская теорема средней скорости будет выглядеть следующим образом: 

1) S = ½ ∙ V>f ∙ t — для случая ускорения от состояния покоя;

2) S = (v>0 + (v>f – v>0)/2)/t — для ускорения от начальной скорости v>0.

где S обозначает проходимое расстояние, v>f — конечную скорость, a t — время ускорения.

Рассмотрим вначале доказательство Суайнсхеда, а затем доказательство Хейтсбери.

а) Доказательство Ричарда Суайнсхеда

Выше приводилось одно из мертонских доказательств теоремы о среднем градусе, принадлежащее Суайнсхеду. Доказательству в трактате Суайнсхеда предпосланы формулировка и разъяснение самой теоремы: «Всякая широта движения, равномерно приобретаемая или утрачиваемая, соответствует своему среднему градусу… Я говорю, что широта, которая приобретается, соответствует своему среднему градусу в том смысле, что ровно столько же будет пройдено посредством той широты, таким именно образом приобретаемой, сколько и посредством ее среднего градуса, если в продолжение всего (totum) времени движение будет происходить с тем средним градусом»[89]. Чтобы доказать это утверждение, Суайнсхед предлагает проделать мысленный эксперимент (излагая его рассуждение, мы постараемся воспроизвести основную идею, не следуя буквально способам ее выражения). Предположим, что тело x движется равноускоренно в течение времени t>xи за это время его скорость возрастает от b до а градусов. Приращение скорости от b до а есть не что иное, как широта движения х. Пусть точно такая же широта движения «равномерно утрачивается» при равнозамедленном движении тела у за время t>y (t>x = t>y). При этом предполагается, что движение у происходит с ускорением, равным (по абсолютной величине) ускорению x (точнее, Суайнсхед говорит не об ускорении, а о том, что а уменьшается и b возрастает при движении у и x равно быстро (equevelociter)). Последнее предположение реализуется в мысленном эксперименте в виде дополнительных требований, налагаемых на движение x и y: 1) x и y начинают двигаться одновременно;

2) «сколько одно (x) приобретает, столько другое (y) утрачивает». Если эксплицировать пункты, выполнение которых подразумевается краткой формулировкой второго требования, то они состоят в следующем. Пусть движение х, у начинается в момент времени t>0, a U обозначает произвольный момент времени их движения. В момент t>i x будет иметь скорость b>i (b>i > b), а у — скорость a>i (a>i < a). Тогда в соответствии со вторым требованием b>i—b = a—a>i.

Если с = (a – b)/2, т. е. является средним градусом широты, то x и y достигнут с одновременно, так что x и y будут иметь одинаковую скорость с в момент t>k (t>k = (t>i – t>0)/2), где t>i — момент окончания движения х, у. Точнее, если обозначить через

скорости x, y в момент времени t>n, то

Отсюда

Но и для произвольного момента времени

так как второе требование равносильно утверждению, что сумма скоростей x и y остается постоянной на протяжении всего движения.

Доказательством

завершается, по существу, все доказательство теоремы у Суайнсхеда. Вывод о равенстве расстояний, проходимых при равноускоренном и равномерном движении со скоростью, равной среднему градусу широты первого, он считает столь очевидным, что предоставляет его сделать читателю. Действительно, из постоянства суммы скоростей V>ti>x и V>ti>y  следует, что два равноускоренных движения, в результате которых проходится расстояние S = S>x + S>y (S>x, S>y — расстояния, проходимые соответственно x и y), эквивалентны в отношении пройденного расстояния равномерному движению со скоростью V = 2c, продолжающемуся в течение того же времени. Поскольку S>x = S>y,то S>x будет пройдено за то же время при равномерном движении со скоростью с.

Быть может, самое любопытное в доказательстве Суайнсхеда — это то, что оно только отчасти является доказательством, а в гораздо большей степени — определением. Когда Суайнсхед указывает, что оба равноускоренных движения уменьшаются и возрастают равно быстро (equevelociter), то он считает возможным отсюда заключить, что «сколько одно приобретает, столько другое утрачивает». В действительности же только последнее уточнение придает утверждению о «равной быстроте» требуемую определенность. Суайнсхед считает необходимым как-то обосновать тот факт, что x и у одновременно достигнут среднего градуса с, что с не просто является полусуммой двух градусов a и b, но и расположено равно посередине, т. е. на равном удалении от а и b. В этом обосновании и состоит главная цель доказательства. Оно начинается с утверждения, что «все, составленное из двух неравных, является двойным по отношению к среднему между ними». В данном утверждении легко рассмотреть определение среднеарифметического, известное еще пифагорейцам, которые умели строить арифметические прогрессии, где каждый член является полусуммой двух соседних и одновременно отличается от них на одну и ту же величину (разность прогрессии). Суайнсхед, безусловно, все это знал и все же принимается снова доказывать, казалось бы, то же самое утверждение. Зачем? Ответ очевиден: он хотел математическое положение, касающееся чисел, представить в виде следствия кинематической теоремы. Его не удовлетворяет традиционное представление, поскольку в нем четко не разделяются два смысла, равно присущие термину «средний». Число


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


История естествознания в эпоху эллинизма и Римской империи

Рожанский Иван Дмитриевич. История естествознания в эпоху эллинизма и Римской империи.Книга посвящена различным аспектам генезиса науки в эпоху раннего и среднего эллинизма и времен римского владычества. Естественнонаучные идеи мыслителей прошлого даны в тесном сопряжении с философскими, религиозными, вообще гуманитарными представлениями той эпохи.Для философов, историков философии, всех интересующихся историей философии и историей науки.