Занимательная квантовая физика - [6]

Шрифт
Интервал



Трудная задача предстояла Пьеру и Марии Кюри — потруднее, чем отыскать иголку в стоге сена. Здесь не удастся пересказать все те сложные и хитроумные химические способы, которые они придумывали и применяли по разделению исследуемого материала на составные части. К каждой такой составной части они подносили заряженный электрометр, чтобы узнать, испускает ли он лучи Беккереля или нет. Если нет, то они ее выбрасывали, а если да, то ее предстояло снова разделить на составные части, снова исследовать их при помощи электрометра, и так далее, и так далее, пока, наконец, таинственное вещество, за которым они так охотились, не будет выделено в чистом виде.



Очень скоро Пьер и Мария Кюри установили, что неизвестных радиоактивных веществ в исследуемом ими материале не одно, а два. Одно из них по своим химическим свойствам должно было быть похоже на висмут, потому что во всех химических реакциях, куда шел висмут, туда шло и это вещество, присутствие которого было заметно по действию его лучей Беккереля на заряженный электрометр. Другое же вещество по своим химическим свойствам напоминало металл барий, потому что оно повсюду следовало за барием. Уже 18 июля 1898 года Пьер и Мария Кюри могли добыть из иоахимстальской руды химический препарат с заметной примесью первого из этих двух веществ (похожего на висмут). Этому веществу они дали название «полоний» (в честь Польши — родины Марии Кюри). Полученный ими препарат полония был во много раз активнее, чем самый чистый уран. А через несколько месяцев, 26 декабря 1898 года, они послали в Академию новое сообщение: они добыли из той же руды другой препарат, в котором содержалось второе неизвестное вещество (похожее на барий). Препарат испускал лучи Беккереля в 900 раз сильнее, чем такое же количество чистого урана. Значит, в этом препарате должно было быть какое-то вещество, в огромное число раз более радиоактивное, чем уран. Добыть это вещество по возможности в большом количестве в чистом (или по крайне мере в сильно сконцентрированном) виде — вот что стало целью жизни Пьера и Марии Кюри. Для достижения этой цели они отказались от всего на свете, просиживали в лаборатории дни и ночи за кропотливыми химическими анализами, стараясь найти способ отделить неизвестное вещество от бария, за которым оно следовало по пятам во всех химических превращениях. Нужно было как-нибудь окрестить это неизвестное вещество, за которым они охотились, и они назвали его радием, т. е. «лучистым веществом», в честь тех мощных потоков лучей Беккереля, которые это вещество будет испускать, когда удастся сконцентрировать его в заметном количестве.

В 1902 году, через четыре года после начала работы Пьер и Мария Кюри получили первые несколько дециграммов чистого хлористого радия, т. е. соединения радия с хлором (на каждый грамм хлористого радия приходится 0,76 г радия и 0,24 г хлора). Несколько маленьких белых кристалликов в форме острых иголочек — вот что получили Пьер и Мария Кюри после четырех лет работы, вот что они добыли из огромной груды переработанного ими иоахимстальского осадка. Но этот хлористый радий был в миллион раз радиоактивнее, чем такое же количество чистого урана, и этим Пьер и Мария Кюри были вознаграждены за огромную проделанную ими работу.

Заметим, что обыкновенно, когда добывают радий, ограничиваются тем, что получают его не в абсолютно чистом виде, а в виде его соединения с хлором или бромом. Впрочем, Мария Кюри в 1910 году получила радий и в чистом виде, пропуская через расплавленный хлористый радий сильный электрический ток: это тот же самый, известный всем еще из школьных учебников, способ электролиза, которым можно разложить на хлор и натрий расплавленный или растворенный в воде хлористый натрий (поваренную соль). Выделенный в чистом виде радий оказался, как и следовало ожидать, блестящим белым металлом, похожим на барий или кальций, с которыми у него есть химическое сходство. Пьер Кюри не дожил до того дня, когда радий был выделен в совершенно чистом виде: нелепый случай лишил его жизни — 19 апреля 1906 года он погиб под колесами телеги на улице Дофин в Париже.



В урановой смоляной руде радия очень мало: необходимо переработать много тонн руды, чтобы получить всего лишь один грамм радия. Но чудесные радиоактивные свойства радия, испускающего в миллион раз больше лучей Беккереля, чем чистый уран, оправдывают всю ту грандиозную работу, которую пришлось проделать супругам Кюри для извлечения радия из руды. В течение четырех лет, протекших от начала работы до получения первых кристалликов хлористого радия, каждый год получались все более и более концентрированные порции радиевых препаратов, и каждый год приносил новые неожиданные открытия. Уже в самом начале работы, когда Пьер и Мария Кюри получили препарат радия, в 900 раз превосходящий своей активностью уран (в декабре 1898 года), было замечено, что лучи Беккереля, как и лучи Рентгена, не только чернят фотографическую пластинку и ускоряют спадание листочков заряженного электрометра, но и заставляют ярко светиться в темноте экран, покрытый слоем платиноцианистого бария или какого-нибудь другого флюоресцирующего вещества. Это свойство лучей Беккереля впоследствии даже получило некоторое практическое применение: сернистый цинк, к которому подмешано самое крохотное количество радиоактивного вещества, светится в темноте под влиянием лучей Беккереля, испускаемых частицами этого вещества, а поэтому таким сернистым цинком с примесью радиоактивного вещества иногда рисуют цифры на циферблате часов и обмазывают стрелки, чтобы можно было ночью взглянуть на часы, не зажигая спички. Во время Первой мировой войны таким сернистым цинком обмазывали ружейные прицелы (чтобы ночью можно было прицеливаться в темноте), стрелки и буквы на магнитной буссоли и т. п.; это даже вызывало резкое повышение спроса и вздорожание радиоактивных веществ (о ценах радиоактивных веществ будет дальше рассказано подробнее).


Еще от автора Матвей Петрович Бронштейн
Солнечное вещество

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Люди и атомы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Юный физик в пионерском лагере

Приступая к систематическому изучению физики в старших классах школы, учащиеся должны уже иметь в памяти некоторый запас элементарных физических фактов. В частности, очень полезно накопить собственные наблюдения над физическими явлениями в природе. Нельзя основывать преподавание физики на одних лишь классных опытах и книжных описаниях: это значило бы крайне обеднять содержание столь всеобъемлющей науки, как физика.К тому же, привычка вдумчиво и внимательно относиться к явлениям, происходящим вокруг нас в природе, воспитывает наблюдательность — способность, чрезвычайно полезную как в мирной, так и в военной обстановке.Эта книжечка предназначена для тех, кто еще не проходил школьного курса физики.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


Физика в играх

Немецкий ученый Бруно Донат с помощью своей книги поможет вам открыть для себя все грани физики! Вы познакомитесь с главнейшими физическими законами природы и научитесь мастерить простейшие приборы для проведения экспериментов. Книга будет полезна не только юным любителям физики, но и родителям, которые хотят привить своим детям любовь к естественным наукам, а также школьным учителям и руководителям кружков, желающим разнообразить и обогатить учебный процесс.


Капля

Книга состоит из отдельных очерков о физиче­ских законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.Книга иллюстрирована кадрами скоростной ки­носъемки и будет интересна самому широкому кругу читателей.


Бегство от удивлений

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.


Нескучная биология

Кто сказал, что наука – это сложно? Это весело и очень интересно! :) В нашей «Нескучной биологии» замечательный автор – биолог и популяризатор науки Алексей Юрьевич Целлариус просто и занимательно расскажет о том, почему наша планета особенная, из чего состоит все живое на земле, как растения и животные стали сухопутными, о том, зачем павлину хвост, а крокодилу зубы, что такое эволюция и естественный отбор, и о многом-многом другом, что имеет отношение к биологии.Для среднего школьного возраста.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Физика без формул

«Физика без формул» замечательного автора и популяризатора науки Александра Анатольевича Леоновича легко и увлекательно расскажет школьникам об атомах и молекулах, квантах и кварках, о магнитных полях, звуковых волнах и электричестве. Предупреждаем: будет интересно! Для среднего школьного возраста.