Занимательная квантовая физика - [4]
Сам уран никогда не флюоресцирует, сколько бы его ни освещали солнечные лучи. Но когда Беккерель положил кусочек урана на фотографическую пластинку, завернутую в черную бумагу, то пластинка, проявленная через несколько часов, почернела от действия невидимых лучей, которые испускал уран. Значит, эти таинственные лучи, которые открыл Беккерель и которые так похожи на лучи, открытые Рентгеном, не имеют ровно ничего общего с флюоресценцией. Сам металл уран обладает чудесным свойством испускать эти лучи; он испускает их и когда находится в чистом виде, и когда соединен с какими-нибудь другими веществами (например, в двойной сернокислой соли урана и калия, где уран соединен с калием, серой и кислородом). Уран испускает эти лучи совершенно независимо от того, освещает ли его в это время солнце или нет. Испускание лучей зависит только от количества самого урана — чем больше урана, тем больше и лучей — и ни от чего другого не зависит.
Когда Беккерель, слушая чтение письма Рентгена, вообразил, что испускание рентгеновских лучей связано с флюоресценцией, то в этой мысли не было ничего верного. И если бы он взял для своего опыта не флюоресцирующую сернокислую соль, содержащую в себе уран, а плавиковый шпат или раствор хлорофилла, то из его опытов решительно ничего не вышло бы. Но по счастливой случайности Беккерель выбрал из всей своей огромной коллекции именно сернокислую соль урана и калия, и это помогло ему открыть удивительное свойство урана: способность без всякой видимой причины испускать лучи, похожие на лучи Рентгена.
Электрометр
Отличаются ли лучи, открытые Беккерелем, чем-нибудь существенным от лучей Рентгена — этого и сам Беккерель в первое время не мог решить. Лучи Беккереля, как и лучи Рентгена, невидимы глазу, проходят через бумагу, дерево, тонкие слои металла, чернят фотографическую пластинку. Очень скоро Беккерель открыл еще одно замечательное свойство лучей, испускаемых ураном (и каждым веществом, содержащим в себе уран), — способность действовать на заряженный электрометр. Электрометр — это такой прибор, в котором свисают рядом два тоненьких золотых листочка.
Стоит только хоть немножко зарядить электрометр электричеством, как листочки сейчас же начнут отталкиваться друг от друга и немедленно разойдутся врозь на некоторый угол. В таком положении они и останутся, пока с них не стечет электрический заряд. Обыкновенно электрический заряд стекает очень медленно, и проходит много часов или даже много дней перед тем, как листочки снова сойдутся. Но Беккерель сделал следующий опыт: он положил в коробку электрометра, под самые листочки, свою лепешку урановой соли, и листочки стали спадать заметно быстрее, а через полтора часа и вовсе сошлись. Сделав несколько опытов, Беккерель увидел, что испускаемые ураном лучи делают воздух способным проводить электричество; поэтому с листочков электрометра заряд утекает через воздух, и листочки спадают.
Когда Беккерель напечатал подробное описание своих опытов, все физики и химики во всем мире всполошились. Лучи Беккереля произвели такую же сенсацию, какую за несколько месяцев перед тем произвели лучи Рентгена. Во всех физических лабораториях только и было разговоров, что о таинственных лучах Беккереля.
Огромное впечатление произвели эти разговоры о лучах Беккереля на одну молодую польку, жившую в Париже, — Марию Склодовскую-Кюри. Склодовская-Кюри, которая в то время еще была начинающим и никому не известным физиком, решила расследовать, один ли только уран испускает лучи Беккереля или же есть и еще какие-нибудь другие вещества, испускающие такие же самые лучи. Для того чтобы узнать, испускает ли какое-нибудь вещество лучи Беккереля или нет, не нужно брать фотографическую пластинку, подумала Мария Кюри: с фотографической пластинкой много возни, и работа подвигается очень медленно. Проще всего взять электрометр, как это делал и Беккерель: если по мере приближения к исследуемому веществу листочки заряженного электрометра будут спадать, значит, это вещество испускает лучи Беккереля, а если нет, то, значит, никаких лучей Беккереля оно не испускает.
Мария Кюри (Склодовская)
Вооружившись своим электрометром, Мария Кюри исследовала множество разных веществ — всевозможные минералы, горные породы, газы, растворы — вообще все, что ей удалось достать. И только в апреле 1898 года она, наконец, наткнулась на одно вещество, которое испускало лучи Беккереля, как и уран. Этим веществом оказался металл торий — довольно редкий металл, который еще в 1829 году был открыт знаменитым шведским химиком Берцелиусом. Не только чистый торий испускал лучи Беккереля, но и все соединения тория с другими веществами. Как и в случае урана, здесь выполнялось такое же правило: чем больше тория, тем сильнее лучи; ни от чего другого испускание лучей Беккереля не зависело. Когда Мария Кюри увидела, что уран не единственное чистое вещество, испускающее лучи Беккереля, но что таким же свойством обладает и торий, она сочла нужным придумать для этого свойства особое название — она назвала его радиоактивностью (от латинского слова «радиус» — луч; радиоактивность — способность испускать лучи). Уран и торий — это радиоактивные вещества, — так назвала их Мария Кюри, — и все их соединения с другими веществами тоже радиоактивны.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Кто сказал, что наука – это сложно? Это весело и очень интересно! :) В нашей «Нескучной биологии» замечательный автор – биолог и популяризатор науки Алексей Юрьевич Целлариус просто и занимательно расскажет о том, почему наша планета особенная, из чего состоит все живое на земле, как растения и животные стали сухопутными, о том, зачем павлину хвост, а крокодилу зубы, что такое эволюция и естественный отбор, и о многом-многом другом, что имеет отношение к биологии.Для среднего школьного возраста.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
«Физика без формул» замечательного автора и популяризатора науки Александра Анатольевича Леоновича легко и увлекательно расскажет школьникам об атомах и молекулах, квантах и кварках, о магнитных полях, звуковых волнах и электричестве. Предупреждаем: будет интересно! Для среднего школьного возраста.