Занимательная квантовая физика - [7]

Шрифт
Интервал

Фотографическое действие лучей Беккереля тоже становилось все интенсивнее и заметнее по мере того, как Пьер и Мария Кюри приготовляли препараты, все более и более богатые радием. Вскоре после начала работы были получены препараты столь активные, что уже не требовалось длительных экспозиций (по нескольку часов), чтобы получилось заметное почернение фотографической пластинки от действия лучей Беккереля: стоило только поднести препарат, содержащий радий, На несколько секунд к завернутой в бумагу фотографической пластинке, как пластинка заметно темнела. В прекрасной книжке «Радий и его разгадка», которую написал английский химик Фредерик Содди — один из Первых исследователей радиоактивности (о его работах будет подробно рассказано дальше), — описывается следующий опыт: берется стеклянная трубочка, в которую помещен препарат, содержащий в себе немножко радия, и этой трубочкой медленно водят, выписывая какое-нибудь слово, как карандашом, по фотографической пластинке, завернутой в черную бумагу, защищающую ее от всех видимых лучей света. После того, как пластинка проявлена, на ней оказывается написанным это слово: Radium.



Вот как быстро лучи Беккереля зачернили те места пластинки, к которым была поднесена трубочка с препаратом радия!

В самых первых опытах над препаратами радия было замечено, что вещество, содержащее радий, всегда немножко теплее, чем все окружающие предметы. Пьер Кюри решил воспользоваться этим для того, чтобы измерить энергию лучей Беккереля, испускаемых радием. В самом деле, эти лучи Беккереля, которые чернят фотографическую пластинку, делают воздух проводником электричества, заставляют флюоресцирующий экран светиться, — должны же эти лучи Беккереля иметь какую-то энергию для того, чтобы делать все это!

Пьер Кюри взял калориметр — прибор, в котором по количеству растаявшего в нем льда определяется, сколько выделилось в приборе тепла, — и поместил туда препарат pадия. Калориметр был взят такой, что все лучи Беккереля, которые испускал препарат, не могли выходить из прибора, все они, как говорят, «поглощались» в массе льда в толстых стенках калориметра. Взвесив растаявший лед и зная, сколько требуется тепла для того, чтобы расплавить это количество льда, Пьер Кюри сумел измерить количество теплоты, выделяемое препаратом радия. Оказалось, что каждый грамм радия в течение часа выделяет из себя 140 калорий энергии (калория — это та энергия, которая нужна, чтобы поднять температуру одного грамма воды на один градус Цельсия). Энергия, отдаваемая радием, уходит с лучами Беккереля, но если эти лучи задержать, поглотить их, как было сделано в опыте Пьера Кюри с калориметром, то та же самая энергия выделяется в виде теплоты. 140 калорий в час! Эта энергия, выделяемая граммом радия, не очень велика: целых 50 часов должно пройти для того, чтобы грамм радия отдал столько же энергии, сколько отдает, сгорая, один грамм угля. Но зато грамм угля, сгорев, превратившись в углекислый газ, уже перестает отдавать энергию дальше, а грамм радия, отдав, хотя и очень медленно — в течение 50 часов — то же самое количество калорий, остается, по-видимому, таким же, каким он был, и продолжает испускать энергию тем же самым темпом.


Калориметр


Вот эта-то способность радия испускать, хотя и очень медленно, большие и казавшиеся совершенно неограниченными количества энергии должна была больше всего заинтересовать физиков: она и дала возможность говорить о загадке радия, о загадке радиоактивности, мучительной загадке, заставлявшей физиков 1900 года ломать себе голову над таинственными свойствами радия и его лучей. Что является причиной радиоактивных явлений? Что заставляет радиоактивные вещества испускать лучи Беккереля? Какова природа этих лучей, так похожих (на первый взгляд) на лучи Рентгена? Откуда радиоактивные вещества берут энергию, которую они затем отдают внешнему миру в форме энергии своих таинственных лучей? И действительно ли эта энергия неисчерпаема? Действительно ли кусочек радия представляет собой нечто вроде «перпетуум-мобиле» — вечного двигателя, о котором так страстно мечтали когда-то изобретатели, — двигателя, который все время может отдавать миру энергию, хотя в нем самом ничего не сгорает, не травится, не портится, не изменяется? Или, может быть, радий совсем не является исключением в мире, где все подчинено закону сохранения энергии, и, может быть, запасы энергии, содержащиеся в радии, хотя и велики, но совсем не неисчерпаемы, и если через 50 часов в грамме радия еще не заметно никакого иссякания, увядания, упадка, то через много недель или даже только через много лет уменьшение запасов энергии в радии должно стать заметным? Вот какие вопросы волновали физиков, изучавших радий, вот какие вопросы составляют содержание загадки радиоактивности, о которой говорит название этой главы нашей книжки.




В дальнейших главах мы узнаем, как была разгадана загадка радия и к каким огромным по своему значению последствиям привела разгадка этой загадки, позволившая физикам необыкновенно глубоко заглянуть в самые сокровенные тайны окружающего нас мира. Но, перед тем как приступить к рассказу о разгадке тайны радия, нужно будет хотя бы вкратце рассказать о том, в каком состоянии находилась физика того времени, когда загадка радия была поставлена и привлекала к себе всеобщее внимание; нужно будет рассказать о том, что физики знали вообще об устройстве вещества, когда им пришлось заняться более узким и специальным вопросом об устройстве радиоактивного вещества. Этому мы посвятим две следующие главы. В этих главах мы расскажем все то, что уже могли знать физики, которым предстояло разгадывать загадку радиоактивности, — все, что физики знали об устройстве вещества до 1902 года (год, когда Пьер и Мария Кюри выделили хлористый радий) и в течение нескольких следующих лет. Но еще перед тем, как погрузиться в эти трудные и важные главы, мы расскажем еще об одном удивительном свойстве радия — свойстве, которое привлекло к нему внимание не только физиков, но и самой широкой публики и вызвало к жизни великое множество практически важных последствий.


Еще от автора Матвей Петрович Бронштейн
Солнечное вещество

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Атомы и электроны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Люди и атомы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Юный физик в пионерском лагере

Приступая к систематическому изучению физики в старших классах школы, учащиеся должны уже иметь в памяти некоторый запас элементарных физических фактов. В частности, очень полезно накопить собственные наблюдения над физическими явлениями в природе. Нельзя основывать преподавание физики на одних лишь классных опытах и книжных описаниях: это значило бы крайне обеднять содержание столь всеобъемлющей науки, как физика.К тому же, привычка вдумчиво и внимательно относиться к явлениям, происходящим вокруг нас в природе, воспитывает наблюдательность — способность, чрезвычайно полезную как в мирной, так и в военной обстановке.Эта книжечка предназначена для тех, кто еще не проходил школьного курса физики.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


Физика в играх

Немецкий ученый Бруно Донат с помощью своей книги поможет вам открыть для себя все грани физики! Вы познакомитесь с главнейшими физическими законами природы и научитесь мастерить простейшие приборы для проведения экспериментов. Книга будет полезна не только юным любителям физики, но и родителям, которые хотят привить своим детям любовь к естественным наукам, а также школьным учителям и руководителям кружков, желающим разнообразить и обогатить учебный процесс.


Капля

Книга состоит из отдельных очерков о физиче­ских законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.Книга иллюстрирована кадрами скоростной ки­носъемки и будет интересна самому широкому кругу читателей.


Бегство от удивлений

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.


Нескучная биология

Кто сказал, что наука – это сложно? Это весело и очень интересно! :) В нашей «Нескучной биологии» замечательный автор – биолог и популяризатор науки Алексей Юрьевич Целлариус просто и занимательно расскажет о том, почему наша планета особенная, из чего состоит все живое на земле, как растения и животные стали сухопутными, о том, зачем павлину хвост, а крокодилу зубы, что такое эволюция и естественный отбор, и о многом-многом другом, что имеет отношение к биологии.Для среднего школьного возраста.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Физика без формул

«Физика без формул» замечательного автора и популяризатора науки Александра Анатольевича Леоновича легко и увлекательно расскажет школьникам об атомах и молекулах, квантах и кварках, о магнитных полях, звуковых волнах и электричестве. Предупреждаем: будет интересно! Для среднего школьного возраста.