Юный техник, 2014 № 05 - [7]

Шрифт
Интервал

Главную премию в размере 75 000 долларов получил 19-летний румынский учащийся Ионут Будистану, который разработал автономную систему управления автомобилем. Он рассказал, что его целью было заменить дорогой 3D-радар высокого разрешения, который лежит в основе технологии автоматического управления Google. Будистану использовал более дешевый 3D-радар низкого разрешения, который распознает крупные объекты, такие, как автомобили, здания и деревья, в то время как веб-камеры, установленные на транспортном средстве, используются для обнаружения линий дорожной разметки и бордюров. Изображения с 3D-радара и веб-камер анализируются с помощью искусственного интеллекта, который вычисляет безопасный маршрут автомобиля.

Автор утверждает, что его система работала безотказно на 47 из 50 автомобилей, но в 3 случаях была не в состоянии распознать людей на расстоянии от 65 до 100 футов (от 20 до 30 м). Однако использование радара с немного лучшим разрешением, который по-прежнему будет дешевле используемого Google, решило и эту проблему своевременного обнаружения пешеходов на дороге, полагает автор разработки.

Школьник из испанского города Жирона, 11-летний Эдуальд Веи, стал лауреатом премии Diamond Award за

свое изобретение — ветряную мельницу, в лопасти которой встроены солнечные батареи. «Я решил достичь выработки энергии без загрязнения окружающей среды с помощью одного механизма, который использует энергию ветра и света», — объяснил он суть своего предложения.

Еще один юный изобретатель, 13-летний житель Нью-Йорка Эйдан Дуайер, обнаружил, что эффективность солнечных электростанций можно повысить, если привлечь математику и скопировать изобретения природы.

На прогулке он как-то задумался: зачем деревьям именно такая схема расположения веток? Он знал, что ветки на деревьях располагаются согласно последовательности Фибоначчи, а листья осуществляют фотосинтез. В какой-то момент Эйдан решил проверить, не помогает ли дереву такое положение ветвей собирать больше солнечного света.

Напомним, что последовательность Фибоначчи — это ряд чисел, начинающийся с 0 и 1 и продолжающийся числами, которые являются суммой двух предыдущих: 0, 1, 1, 2, 3, 5, 8, 13. Такую последовательность ученые разглядели в природе — в расположении семян подсолнечника в его «шапке», в спиралях ракушек.

Общеизвестно, что природа ничего не делает зря. Оказалось, что установка, напоминающая дерево, на самом деле работает эффективнее, чем обычные солнечные батареи.

Среди призеров оказалась и 18-летняя Иша Каре из города Саратога, Калифорния, получившая премию в 50 000 долларов за изобретение крошечного устройства, которое помещается внутри аккумуляторов мобильных телефонов и способно заряжать их всего за 20–30 секунд. Аналогичная технология также применима для сокращения времени зарядки электромобилей. Еще 50 000 долларов получил 17-летний Генри Лин из Шривпорта, штат Луизиана, создавший виртуальную модель тысяч галактик, тем самым давая ученым новые возможности для изучения темной материи, темной энергии и баланса нагрева и охлаждения самых массивных объектов Вселенной.

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Виртуальная археология, или каким был Сфинкс до нашей эры?

С помощью персональных компьютеров и технологии компьютерного проектирования ученые попытались решить сложнейшую историко-детективную задачу — воссоздать первоначальный образ Сфинкса.



Великий Сфинкс неизменно вызывает у туристов, посещающих плоскогорье Гиза в Египте, благоговейный трепет и изумление. Однако, глядя на разрушения, оставленные непогодой и временем на лице и крошащемся известняковом теле статуи, многие задаются вопросом: «Каким же был Сфинкс 4600 лет назад? И сколько стоять еще этому, последнему из семи чудес света?»

Ответить на эти вопросы взялась международная группа талантливых египтологов и специалистов по компьютерам, которые воссоздали изумительно точную трехмерную модель Сфинкса. И теперь исследователи имеют возможность заглянуть в прошлое и представить, как выглядел Сфинкс в своем первозданном виде.

Используя современную компьютерную технологию, исследователи восстановили уничтоженные временем и разрушенные под воздействием окружающей среды отдельные части монумента — лицо Сфинкса и статую фараона у его груди (и даже покрыли ее, как когда-то, с головы до пят красной краской).

Работа велась в несколько этапов. Первоначальные данные были взяты с чертежей, сделанных Марком Ленером, египтологом из Института Востока при Чикагском университете, еще в 1987–1991 годах. Сочетая технологии фотометрической и топографической съемки, он тогда сделал сотни чертежей, задокументировав каждый камешек, каждую трещину. Благодаря столь тщательной работе специалисты и смогли создать трехмерную каркасную модель.

Впрочем, форму каркасная модель начала обретать только после того, как из сотен чертежей было создано единое изображение. Причем по команде программистов компьютер не только с максимальной точностью воспроизвел нынешний облик Сфинкса. Учитывая 100 тысяч «контрольных точек», программа стала затем «наращивать» на его лицо утраченную «кожу», стараясь воспроизвести портретное сходство. Ведь по историческим источникам известно: прототипом лица Сфинкса послужило изображение фараона Хафре, построившего этот монумент и вторую из трех пирамид в Гизе. Его посмертная статуя в натуральную величину, сохранившаяся до наших дней, и стала дополнительным источником информации для компьютерной модели. Далее были исследованы сопутствующие атрибуты монумента, и в первую очередь часовня из гранитных блоков между его передними лапами и давно исчезнувшая надгробная статуя фараона Аменхотепа II, о которой упоминалось в летописях. Чтобы их восстановить, в компьютерную композицию были добавлены топографические данные другого знаменитого египетского памятника — Абу Симбела.


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.